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Lecture 10 notes

Puzzler (last chance at this one):
Last time, Alice and Bob wanted to exchange messages, but the only time they met was 
in a class where Carl sat between them. Everything they exchanged had to go through 
Carl. To prevent him from reading their notes, they devised a scheme of using both of 
their locks on the outside of the suitcase. 

But a problem happened: To all appearances, the locks seem identical. In other words, 
Alice can’t see whether or not a lock on the suitcase is really Bob’s. She suspects that 
Carl has been switching suitcases, and the locks that she assumed were Bob’s were 
actually Carl’s! It looks like some of the notes she received weren’t actually from Bob, 
but maybe from Carl instead!

This time we’re changing the problem a bit: All the locks are now combination locks. 
Anyone can buy as many combination locks as they want. There is also a blackboard in 
front of the room, and if anyone wants, they can share the combination to any of their 
locks if they want.

This time, two kinds of briefcases are available: the regular ones from before, and new 
smaller ones that can fit inside the regular briefcases. What can Bob and Alice work out 
(with Carl possibly hearing the whole plan) so that Bob can send a private message to 
Alice, and Alice can be sure the message came from Bob?

Modular Arithmetic Fundamentals

Part 1 : language and its reconceptualization
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﻿ means the type of number such that when divided by ﻿ has the same remainder as 
 does.

Examples:

1 is a number of type ﻿ it is also a number of type ﻿. 

﻿ is also a number of type ﻿.

﻿, ﻿, ﻿ and ﻿ are all symbols which represent the same type of 
number, and ﻿ is an example of a number of this type (as are ﻿, ﻿, ﻿, and ﻿).

These types are called congruence classes modulo ﻿. So, for example

﻿ is a congruence class modulo ﻿. It is also the type of number which we call 
“odd.”

The numbers ﻿ and ﻿ are in the same congruence class modulo ﻿. This 
congruence class can be denoted by ﻿ or by any of the names from the 
corresponding example above.

We have another notation for congruence classes: if ﻿ and ﻿ are in the same 
congruence class modulo ﻿, we write ﻿. We say in this case that ﻿ and ﻿ 
are congruent modulo ﻿.

Examples:

Some numbers which are congruent to ﻿ modulo ﻿ are ﻿, ﻿, ﻿.

Write down some numbers which are congruent to ﻿ modulo ﻿

Let’s be a bit more formal. What does “type” of number really mean? We have to be 
careful when using words like this — it feels like we are making up words if we aren’t 
careful, and when we are making up new words, we risk manipulating concepts in ways 
which are not well grounded or justified. These new words can be very helpful (perhaps 
essential in a practical sense) for giving us the intuition for working with things 
conceptually, but at the end of the day, they need to be presented in terms which are 
grounded in concepts which are already “vetted.”

So: what is a “type” of number in this context? It is just a subset of the integers in this 
case.

In other words, what does being an even number mean? It means being in the subset

[a] ​d d

a

[1] ​2 [6] ​5

21 [6] ​5

[8] ​7 [1] ​7 [15] ​7 [−6] ​7

22 8 1 15 −6

d

[1] ​2 2

8 22 7
[1] ​7

a b

d a ≡ b (mod d) a b

d

4 9 13 22 31

7 13
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﻿

of the integers ﻿.

In other words, we can define formally ﻿ and 

more generally 

so:

﻿

Part 2: Describing congruence classes
 

Proposition: 

Suppose we have integers ﻿ with ﻿. Then the following statements are 
equivalent:

1. ﻿

2. ﻿ is in the congruence class ﻿

3. ﻿ is in the congruence class ﻿

4. ﻿ is divisible by ﻿

Before we do this, let’s make an initial baby proof:

Lemma:

Suppose ﻿ are integers with ﻿. Then ﻿ is in the congruence class ﻿.

proof of the lemma:

 being in the congruence class of ﻿ means that ﻿ and ﻿ have the same remainder 

when divided by ﻿. Check.

proof of the proposition:

We will show that if 1 is true then 2 is true and if 2 is true then 3 is true and if 3 is true 
then 4 is true and if 4 is true then 1 is true.

{… , −4, −2, 0, 2, 4, …} = {2m ∣ m ∈ Z} = {n ∈ Z ∣ n is divisible by 2}

Z
[0] ​ =2 {n ∈ Z ∣ n is divisible by 2}

[a] ​ =d {n ∈ Z ∣
n has the same remainder that a does when divided by d}

[3] ​ =7 {… , 3, 10, 17}

a, b,d d > 0

[a] ​ =d [b] ​d

a [b] ​d

b [a] ​d

a − b d

a,d d > 0 a [a] ​d

a a a a

d
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So, suppose that 1 is true. In other words, suppose that the congruence classes of ﻿ 
and ﻿ coincide. Since ﻿  is in the congruence class ﻿ by the lemma and ﻿ 
by the hypothesis, it follows that ﻿ is in the congruence class of ﻿. Therefore ﻿ is true.

Now suppose 2 is true. By definition, ﻿ is in the congruence class ﻿ means that ﻿ and 
 have the same remainder when divided by ﻿. But this means, also by definition that ﻿ 

is in the congruence class ﻿. Therefore 3 is true.

Now suppose 3 is true. As we said above, this means that ﻿ and ﻿ have the same 

remainder when divided by ﻿. By the division algorithm, we can then write ﻿ 
and ﻿ (notice the same ﻿. But therefore when we subtract, we see that

﻿ is a multiple of ﻿

therefore 4 is true.

Now suppose that ﻿ is true. In other words, suppose that ﻿ is a multiple of ﻿. We 
need to show that the sets ﻿ and ﻿ are the same. In other words, we need to show 

that they have the same elements, or, in other words, that an integer ﻿ is in ﻿ if and 
only if it is in ﻿.

So for example, suppose ﻿ is in ﻿. We will show it’s in ﻿. Since it is in ﻿ we 
know that we can write ﻿ and ﻿. Let’s suppose that ﻿. 

To know that ﻿ we need to show that ﻿. We can see that 
﻿ is a multiple of ﻿. We also know that ﻿ is a multiple of ﻿ by assumption. Let’s 

say ﻿. Then we have 
﻿ is a multiple of ﻿. But examining the above expressions then gives:

﻿ is a multiple of ﻿. Copying down, 

we have actually

﻿

but therefore we find (subtracting off) that

﻿ and so  is a multiple of ﻿. Of 
course, by taking negatives, we would also know that ﻿ is a multiple of ﻿. Let’s 
choose the one which is positive. So for example, if ﻿ we find that ﻿ is positive 
and a multiple of ﻿. But look: by the division algorithm, both ﻿ and ﻿ are strictly less than 

. So ﻿ is less than ﻿ and subtracting off a nonnegative number less than ﻿ we find that 
again ﻿. But since ﻿ is a multiple of ﻿ the only possibility is that it is 
. Therefore ﻿ and ﻿ and ﻿ have the same remainder when divided by ﻿. Therefore 

a

b a [a] ​d [a] ​ =d [b] ​d

a [b] ​d 2

a [b] ​d a

b d b

[a] ​d

a b

d a = qd + r

b = q’d + r r

a − b = qd + r − q’d − r = (q − q’)d d

4 a − b d

[a] ​d [b] ​d

m [a] ​d

[b] ​d

m [a] ​d [b] ​d [a] ​d

m = qd + r a = q’d + r b = pd + s

m ∈ [b] ​d s = r m − a = (q −
q’)d d a − b d

a − b = dt m − b = m − a + a − b = (q − q’)d + dt = (q −
q’ + t)d d

m − b = qd + r − pd − s = (q − p)d + (r − s) d

(q − q’ + t)d = m − b = (q − p)d + (r − s)

(q − q’ + t − q + p)d = (t + p − q’)d = r − s r − s d

s − r d

r ≥ s r − s

d r s

d r d r

0 ≤ r − s < d r − s d 0
r = s m b d
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﻿ implies ﻿. The argument showing the opposite is exactly the same 
but with ﻿ and ﻿ reversed. Therefore ﻿ and ﻿ is true.

This completes the proof.

This gives us a pretty concrete description of these classes. We find

﻿

﻿

list 3 negative integers which are congruent to ﻿ modulo 14

Recall also the alternate notation:

﻿ means that ﻿ and ﻿ are in the same congruence class modulo ﻿

equivalently this means ﻿ is a multiple of ﻿ or that ﻿, for example, by the 

above.

Part 3: Arithmetic of congruence classes (modular 
arithmetic)

The punchline: addition, subtraction, multiplication is compatible with types.

In other words: If ﻿ and ﻿ are congruent modulo i.e. 

﻿ ﻿ 

and ﻿ and ﻿ are congruent modulo ﻿ i.e.

﻿

then: 

﻿

m ∈ [a] ​d m ∈ [b] ​d

a b [a] ​ =d [b] ​d 1

[a] ​ =d {n ∈ Z ∣ n− a is a multiple of d} = {a + md ∣ m ∈ Z}

= {… ,a − 3d,a − 2d,a − d,a,a + d,a + 2d, …}

2

a ≡ b (mod d) a b d

a − b d [a] ​ =d [b] ​d

a a’

a ≡ a’ (mod d) d

b b’ d

b ≡ b’ (mod d)

a + b ≡ a’ + b’ (mod d)
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﻿

﻿

and for any positive integer ﻿,

﻿

We can think of this as saying that “arithmetic on types makes sense”

That is: if you have a number of type ﻿ and a number of type ﻿ and you multiply 
them, you get a number of type ﻿. 

This is what the above says: if we choose ﻿ a number of type ﻿ and we choose ﻿ a 
number of type ﻿ and we multiply them to get ﻿, this is a number of type ﻿

Divisibility Rules and Games

What about ﻿? This is a little more complicated, but we can notice that ﻿ so only 
need to consider the last two digits. Further, since ﻿ we can state that a rule 
could be: a number is a multiple of ﻿ if the last two digits are. And a 2 digit number is 
divisible by ﻿ if twice the first plus the second digit is divisible by ﻿. So, for example:

to check ﻿ we need to check ﻿ and for this we need to look at ﻿ so 
yes.

to check ﻿ we check ﻿ and this gives ﻿ which is divisible.

to check ﻿ we check ﻿ which reduces to ﻿ which reduces to ﻿ which 
reduces to ﻿. So no.

Notice in these, we aren’t just checking if a number is divisible by ﻿, we are also 
computing its remainder after division!

We can do a similar rule for ﻿ using the last ﻿ digits (homework?)

a − b ≡ a’ − b’ (mod d)

a ⋅ b ≡ a’ ⋅ b’ (mod d)

n

a ≡n (a’)n (mod d)

[a] ​d [b] ​d

[ab] ​d

a’ [a] ​d b’
[b] ​d a’b’ [ab] ​d

4 4∣100
[10] ​ =4 2

4
4 4

291172 72 14 + 2 = 16

1892419081252 52 12

214974 74 18 10
2

4

8 3



Lecture 10 notes 7

How about ﻿? For this, there is a really cute trick. 

Let’s notice that ﻿ and that ﻿. 

As a preamble let’s make an observation: 

we have ﻿ if and only if ﻿. 

So in other words, we can always multiply by ﻿ without messing our problem up. 

Why is this and why is it useful?

Why is it? On the one hand, if  then . 
On the other hand, if ﻿ then 

﻿. 

Why does it help? The trick.

Now for the trick:

Suppose we have a number with last digit ﻿, so it looks like ﻿. Then we 
have ﻿ if and only if ﻿. But 

﻿. 

So, we can check if a number is divisible by ﻿ by sliding the digits over and adding 5 
times the last digit. For example:

To check if ﻿ is divisible by ﻿, we find it is divisible if and only if 
 is. And this is if and only if ﻿ is. And this is if and only if 

﻿ is. And this isn’t because it is 4 more than ﻿. 

But this doesn’t mean that the remainder of 12981 is 4 when divided by ﻿. The 
remainder is actually ﻿, which we can see by examining ﻿

﻿ is divisible by ﻿.

We could have actually made a slightly easier rule by using the intuition of the ﻿ rule 
above. Notice that ﻿. So we could have also said ﻿. 

So for example, we would get 
﻿ done. so it is not a multiple of 7. 

Notice we switched rules in the middle — they both work!!

7

[10] ​ =7 [3] ​7 [5] ​[3] ​ =7 7 [1] ​7

[n] =7 [0] ​7 [5n] ​ =7 [0] ​7

5

[n] ​ =7 [0]7 [5n] ​ =7 [5] ​[n] ​ =7 7 [5] ​[0] ​ =7 7 [0]7
[5n] ​ =7 0 [0] ​ =7 [3] ​[5n] ​ =7 7 [3] ​[5] ​[n] ​ =7 7 7 [15] ​[n] ​ =7 7

[1] ​[n] ​ =7 7 [n] ​7

a n = a + 10b
[n] ​ =7 0 [5n] ​ =7 0 [5n] ​ =7 [5a] ​ +7 [5] ​[10] ​[b] ​ =7 7 7 [5a] +7

[5] ​[3] ​[b] ​ =7 7 7 [5a + b] ​7

7

12981 7 1298 + 5 =
1303 130 + 15 = 145 14 +
25 = 39 35

7
3 12978

12978 → 1297 + 40 = 1337 → 133 + 35 = 168 → 16 + 40 = 56 → 5 +
30 = 35 7

11
[5] ​ =7 [−2] ​7 [a + 10b] ​ =7 [b − 2a] ​7

891724 → 89172 − 8 = 89164 → 8916 − 8 =
8908 → 890 + 40 = 930 → 93 → 9 − 6 = 3


