Puzzler (last chance at this one):
Last time, Alice and Bob wanted to exchange messages, but the only time they met was in a class where Carl sat between them. Everything they exchanged had to go through Carl. To prevent him from reading their notes, they devised a scheme of using both of their locks on the outside of the suitcase.

But a problem happened: To all appearances, the locks seem identical. In other words, Alice can't see whether or not a lock on the suitcase is really Bob's. She suspects that Carl has been switching suitcases, and the locks that she assumed were Bob's were actually Carl's! It looks like some of the notes she received weren't actually from Bob, but maybe from Carl instead!

This time we're changing the problem a bit: All the locks are now combination locks. Anyone can buy as many combination locks as they want. There is also a blackboard in front of the room, and if anyone wants, they can share the combination to any of their locks if they want.

This time, two kinds of briefcases are available: the regular ones from before, and new smaller ones that can fit inside the regular briefcases. What can Bob and Alice work out (with Carl possibly hearing the whole plan) so that Bob can send a private message to Alice, and Alice can be sure the message came from Bob?

(1) https:l.

Langrage if modular anthmetic
Recall: [aId wears the type of number which when
jested ty d has the same remsoinles as a bees when Dried by d.
Ex: -1 is numb f tire $[7]_{2}$ and abs of type [cTs

- 21 is a bo a numbs. 1 type $[6]_{s}$
- $[8]_{7}$ and $[1]_{z}$ mean the same thy. hath wean hoary a remands of 1 wien donny $b_{y} 7$.
Thess symbols $[a]_{d}$ represent what ore called "canyruence classes" modulo d.
[5] 7 is a cangneue class mojo 7
Si, 22 are in the same congnence class modulo 7 save remainder len duded $h_{7} 7$.
$8 \equiv 22(\bmod 7)$ weans $8 \div 22$ are in save cangrence dos modulo 7

$$
[1]_{7}
$$

Same numloscangreat to 4 modulo 9 are. $13,22,31$

Pallev.cam/ Okrashen

What is a "type" of numb?
Def Type of number means subset of \mathbb{Z}.

$$
\begin{aligned}
\frac{\text { example: }}{\text { even }} \longleftrightarrow & \{\ldots,-4,-2,0,2,4, \ldots\} \\
& =\{2 m \mid m \in \mathbb{Z}\} \\
& =\left\{n \in \mathbb{Z} \mid n \text { is dmsible }\left.\right|_{2} 2\right\} \\
\{3\}_{7} & =\{\ldots, 3,10,17,24 \ldots\}
\end{aligned}
$$

10 hastipe $\{3\}_{7}$
II
$10 \in[3]_{7}$
Desrity congrence clases (sulsels of $\mathbb{\}}$
Propasitun: Given $a, b+\mathbb{Z}, d$ a pas int f er, the folleng statemants are equivalout:

1. $[a]_{d}=[b]_{d}$ (equaliy at sets)
2. a is in class $[b]_{d}$ (ascotion de setmentushif
3. b is in class $[a]_{d}$
4. $a-b$ is dinsilite $b y d$.

Prelimincy lemma:
Suppare $a \in \mathbb{Z}, d>0$ intfer then $a \in[a]_{d}$
Pf: $[a]_{d}$ means the intgrs whose remainde when dinind ly d is the sare as the remsindr of a when dimived he d.
But by off the remandr f a when divided by d is the remainds ta mlendinided hy d. so at $[a]_{d}$.

Prof. \& prop
Supare 1 (i.e. $\left.[a]_{d}=[b]_{d}\right)$
want to show 2 (i.e. $a \in[]_{d}$)
by lemma, $a \in[a]_{d}$ hy hyy attesis $[a]_{d}=[b]_{a}$.
So $a \in[b]_{d}, V$
Soppare 2 (i.e. ac [b/d])
want to show 3 (ie. $\left.b \in[a]_{d}\right)$
$a \in[b]_{d}$ reans $a\{b$ have tle sane remender when dindy by d. that abo menns $b \in[a]_{d}$.
Suppare 3 (ie. be $[a]_{d}$)
want to shaw 4 (i.e. $a-b$ is a mull. d d)
sine $b \in[a]_{d,} a, b$ save vemonds rleuduady byd.

$$
\text { i.e. } \begin{aligned}
& a=q d+n \quad b=q^{\prime} d+r \\
& a-b=q d+r-q^{\prime} d-r=\left(q-q^{n}\right) d-(r-r) \\
&=\left(q-q^{\prime}\right) d \\
& \quad \text { r mull. \& } d .
\end{aligned}
$$

Final clatlenge $a-b$ molt of $d(t)$
want to shar $[a]_{d}=[b]_{d}$.
By det, this means we mant to show $[a]_{d}$ \&. $\left.L_{2}\right]_{d}$ same elements - i.e. if $m \in[a]_{d}$ then $m \in[b]_{d}$ ¿́vise versa.
ne'll show anly $m \in[a]_{d}$ imples $m \in\{b]_{d}$ (newse follow siniloly)

Utility:

$$
\begin{aligned}
{[a]_{d} } & =\{a, a+d, a-d, a+2 d, a-2 d \ldots\} \\
{[13]_{11} } & =\{13,2,-9,-20, \ldots\} \\
-20 & =(-2) \cdot 11+2
\end{aligned}
$$

Asentran:

$$
[a]_{d}+[b]_{d}=[a+b]_{d}
$$

$\left[\begin{array}{cccc}\text { green a nodi congruent to a mod } & d \\ 1 . & b & \cdots & d \\ \text { add them, get a numb cons. to } a+b & \text { mod } d .\end{array}\right]$

$$
\begin{array}{r}
{[a]_{d}=\{a+m d \mid m \in \mathbb{Z}\} \quad\{b+m d \mid m \in \mathbb{Z}\}=\left[\left.b\right|_{d}\right.} \\
a^{\prime} \\
a^{\prime}+b_{j}^{\prime} \in\{a+b+m d \mid m \in \mathbb{Z}\}=[a+b]_{d}
\end{array}
$$

candor anthmetic (add, sub, wall, exp.) wi cangrene classes as if they ore numbs.

Ohorovton: $[5]_{7}[3]_{7}=[1]_{7}$

$$
[5]_{7}[10]_{7}=[1]_{7}[10]_{7}=[3]_{7}
$$

Shaver $[n]_{7}=[0]_{z}$ if and any if $[5 u]_{7}$ if $[n]_{7}=[0]_{7}$

$$
\begin{aligned}
& {[5 n]_{7} }=15]_{7}[n]_{7} \\
&=[5]_{7}[0]_{7}=[0]_{7} . \\
& \text { if }[5 n]_{7}=[0]_{7} \\
& \text { Sen }[3]_{7}[5 n]_{7}=[3] \cdot[0]=[0] \\
& {[35 \cdot n] }=[3,5][n] \\
&=[15 \cdot[n]=[n]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Soppase } n=a+10 b \\
& {[5 n]_{7}=[5 a]_{7}+\overbrace{[5]_{7}[10]_{7}}^{[1]}[b]_{7}} \\
& =[5 a+b]_{7} \\
& 5392 \rightarrow 5.2+539=549 \\
& \text { \} } \\
& 9.5+54=99 \\
& {[5]=[-2]} \\
& =9.5+9 \\
& =45+9=50
\end{aligned}
$$

