Puzzler: You are given 10 stacks of 10 coins each. One of the stacks contains counterfeit coins, each of which weighs exactly 21 grams. The other nine stacks contain all genuine coins weighing exactly 20 grams.

You are given a very accurate scale to use to weigh the coins. For each weighing, you put some of the coins on the scale and can check the reading of how much it weighs.

But -- the scale is almost out of batteries, so you want to be careful. How many weighing do you need to make in order to accurately determine which pile is counterfeit?

Assai 1 (why?)
No c class on Tres Oct 10
New monthly de dole Tues aet io emininght
ENocless Tess Noun 21

Today

- Anthetic (Dimibilíy Fr 13)
- Crypgarajly bless
- Intro. ti graphtlery (networks, days mans...)
- Storytree (leary the shag fa liven)

Divisibility tricks
4 Rule (How to tell il a numbs is dur. b_{7} Y)
i). a numbers div by 4 exactly when its last 2 digits are dinible by 4 .
ii). Fo a 2 duyit numher it's div. by 4 if eith
a He ro's syit is een? is is $0,4,8$

- He 10's Dyit is ad $r_{2} 1^{\prime}$ is 2,6
exi $379432 \pi \sqrt{3} \sqrt{2} 26$
Why des this work?

$$
\begin{aligned}
& n=a+100 b \\
& n=379432 \\
& \text { 2833t wodsplad dop }=32+100(3794)
\end{aligned}
$$

Q:

$$
\begin{aligned}
& \text { is }[n]_{4}=[0]_{4} \text { ? } \\
& \begin{aligned}
{[n]_{4}=\left[a+(00 b]_{4}\right.} & =[a]_{4}+[100 b]_{4} \\
& =[a]_{4}+[100]_{4}[n]_{4} \\
& =[a]_{4}+[0]_{4}[b]_{4} \\
& =[a]_{4}+[0 . b]_{4}=[a]_{4}
\end{aligned}
\end{aligned}
$$

verities i)
what ant 2 digit \#s?
$i^{2} 0^{x} d=2 r^{x^{2}}$

$$
[c+4 r+2]_{4}
$$

$$
[\mathrm{c}+2]_{4}
$$

cidiyit $\#$ and want ct 2 mull of 4

$$
c=2,6
$$

ic)

Rules:
3 add digits, check if mull. f 3
9 - 9
II altraatdy add ts subtract, check if mull af 11

$$
\begin{aligned}
& m=c+l 0 d \quad[m]_{4} \\
& \begin{array}{ccc}
\text { is } & \uparrow & \pi c \\
i o s & {[c+10 d]_{4}}
\end{array} \\
& {[c]_{4}+\left[(0]_{4}[d]_{4}\right.} \\
& =[c]_{4}+[2]_{4}[d]_{4} \\
& =[c+2 d]_{4}
\end{aligned}
$$

$$
\begin{gathered}
3157=287 \times 11 \\
\frac{3-1+5-7}{8}
\end{gathered}
$$

7 null: $n=a+10 b$
in dir hytif $5 a+b$ is or if $b-2 a$ is.

$$
\begin{aligned}
5693 \sim 569+5.3 & =569+15 \\
& =584 \\
& \vdots \\
& 58+4.5
\end{aligned}
$$

78

$$
\begin{aligned}
& \text { Fri the } 13^{\text {th }}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \sim 30 C A \\
& d=\quad 3 \sim 316 \mathrm{~J} 30 \longrightarrow[d+t] \\
& {[d+52]_{7}} \\
& \text { د } 31-[d]_{7} 1^{\text {th }} \\
& \begin{array}{ll}
28 \\
C & F \\
\hline
\end{array} \\
& 2 \sim 30 C\left(\begin{array}{l}
\mathrm{J} \\
31
\end{array}\right][d+6] \\
& 36 \text { A } 31 —[d+2] \\
& 3\left(\begin{array}{ll}
\text { S } & 30
\end{array}\right][d+5] \\
& 2\left(\begin{array}{ll}
0 & 31
\end{array}\right. \text { Ed] } \\
& 3(\mathrm{~N} 30 \text { — }[d+3) \\
& 2(D 31 \longrightarrow[d+5]
\end{aligned}
$$

$$
\begin{aligned}
& \triangle 31,[d]_{7} \\
& \begin{array}{lll}
28 \\
C & 26^{\prime} 129 & {\left[\begin{array}{ll}
{[d+3]_{7}} \\
M & 31
\end{array}\right.} \\
{[d+4]_{7}}
\end{array} \\
& 3 \sim 31\left(\begin{array}{ll}
M & 31 \\
A 30
\end{array}\right]\left[\begin{array}{l}
{[d+4]_{7}} \\
{[d]}
\end{array}\right. \\
& 2 \sim 30 C M 31 \longrightarrow[d+2) \\
& 3 \sim 316 \mathrm{~J} 30 \longrightarrow[d+5] \\
& 2 \sim 30 \mathrm{C} \frac{\mathrm{~J}}{\mathrm{~J}} 31 \longrightarrow[d] \\
& 3 C \text { A } 31 \longrightarrow[d+3] \\
& 3(\mathrm{~S} 30 \longrightarrow[d ; 6] \\
& 2(0 \quad 31 —[d+1] \\
& 3[N 30 \longrightarrow[d+4] \\
& 2(D 31 \longrightarrow[d+6]
\end{aligned}
$$

Cryptegraply

to send secore nessges:

- agnee an "scuret lay" (lage\#)
- relatelz eacy to cucaders decade
"chunk" messge, ve bey to shifle incomplated hy ruasibte way. AES

All crapto systems nely on
"I way functuns/pmesses"
Classic examplei discoele logarith propsty,
Given prone number p Hen for "mast" numbs $2 \leqslant g \leqslant p-2$ if re consdr the syere

$$
[g]_{p},\left[g^{2}\right]_{p},\left[g^{3}\right]_{p} \ldots\left[g^{p-1}\right]_{p}
$$

save serere (shattled) as

$$
[1]_{p},(2]_{p_{2}}, \ldots,\left[p^{-1}\right]_{p}
$$

exi $\quad\left[2^{57}\right]_{101}$ easy.

$$
\begin{aligned}
& {\left[2^{2}\right]_{101}=[35]_{101}} \\
& ?=\log _{2}[35)_{101}
\end{aligned}
$$

