Puzzler
take a cube with sides labelled, turn it once over away from you, then once counterclockwise. then switch the labels on the bottom and left sides. if you do this over and over, will it ever get back to where it started? why or why not? if so, how many times will you need to do this until it is back where it started?

Back to Platonic Solids

\#faces

$$
\frac{\text { Progetese } f \text { graph }}{10}
$$

- each fie has sure\#. e edges
- each writer sue dare (same\# Ides)

Euler's frow h:

$$
\text { (\#fines)-(\#felys) }+ \text { (\#ustes) }=2
$$

Last tee $n=$ \#urtres $e=\#$ edges $f=\# f$ fer $k=$ \#sides per face

$$
2 \# e d y s=f k \quad 2 e=t k
$$

$f=\#$ foues $k=\#$ \#des

$$
n=\# \text { whies } \quad f \cdot k=v d
$$

$$
\begin{aligned}
\text { \# of faces po wrtex } & =\text { de ree funtex } \\
& =d \\
2 e=f k \quad f k=n d \quad f-e+n & =2
\end{aligned}
$$

$n=\#$ withes $e=\#$ elyes
$t=\#$ faes
$d=\#$ tees atcah
$k=$ \#sides firater.
Cases:

$$
\begin{array}{ll}
k=3, d=3: & 2 e=f 3 \\
k=3, d=4 \mathrm{~m} \rightarrow \\
k=3, d=5 \mathrm{~m}, ~ \\
n=6 \\
n=6 & e=12 \\
n=8 & d=3 \\
k=4
\end{array} \quad \begin{aligned}
& f-e+f=2 \\
& 2 f-e=2 \\
& e=2 f-2 \\
& 2(2 f-2)=3 f \\
& 4 f-4=3 f
\end{aligned}
$$

$$
\begin{gathered}
f=4 \\
n=4 \\
e=8-2=6
\end{gathered}
$$

Matcly
a matcy on a graph is a collecton fedys which hare ua camman wtex

Practe: Bipartitegraph
Def A biprittegraph is a graph G whose wties hue been partituned imto twa disjant suhats $V(G)=X \cup Y$ whe notoo whteces in X ore adjacent
ac na tron whes in 4 areadynent

Hall's Herem
there is a matchy which covers each vertex in X if und anly it fo each

Natetram
if scx
write $N(S)=\{$ uertles adjaent t sone vatexins $\}$

$$
S c x, \# N(s) \geqslant \# S
$$

ex

4.
k.
$X=$ values $\quad Y$ =piles
$S \subset X$ save calledan of vales
wantio suy \#N(S) \geqslant \#S
\#at piles withe t aves \#vales ms vales

