Every Sunday you come to the train stanton and step onto the first train b arrive, tat it to its first stop. You arrive at a random tree eahonong.
There are two trains, each running any 10 minutes.
Train A tales you to the Blitz daunt shop
Train B takes you to Martha's Machi ry y slap.
Affer a while, you realize that you end op at the Mochi Shop abate 8 times at of 10 . How cold this be?

Barber in the village whoa shires ewe ave who doesen't shoe thanselves.
Q: who shames the barber?
Sets can soreturs be eleuats of other cots.

$$
\{\phi\} \in\{\phi,\{\phi\}\}
$$

Gen asst X, it males scene to ask

$$
\text { is } X \in X \text { ? }
$$

let $S=$ fleset of all sets that don't suntan tremorke

$$
=\{x \mid x \notin x\}
$$

ex. $\{\phi\} \notin\{\phi\} \Rightarrow\{\phi\} \in S$

$$
\begin{array}{lc}
\{1\} \in S & 1+\{1\} \\
& \{1,\{1\}\} \notin\{1,\{1\}\}
\end{array}
$$

is $S \in S$?
if $S \in S$ then by dif. S it satisfer tlepruty S $\$ 5$ S S $S \in S$ but $S \& S$. jablem.
it $S \notin S$ then S satishas the yap. ditangs. $S a S \in S$.
"Russel's pradax"

Set thry was propised (hy cantor, Zeveb, fromentel.) as a new axiomatic fremork of math.
Cave wl a formal lanuzge
patuon of sets 's. noles to talk about flam tireaan withm.
"Axiom of camprelensia"
Suysi if X is any set, F is a stefement ahaut elevents of X, tre or false for any green $x \in X$ then it makes sanse to canstuct

$$
\left\{x \in X \mid F \text { is the }\left\{r_{x}\right\}\right.
$$

Clissic Rusel puradax; let $U=$ the et. Fallsots

$$
\begin{equation*}
S=\{x \in u \mid x \notin x\} \tag{2}
\end{equation*}
$$

List of ~ 8 Axims wlaut ability to caneds

"S is thenel cansisty of the things such that stuff is tre"

$$
\begin{aligned}
& \{2 n+1 \mid n \in \mathbb{Z}\} \\
& \quad=\{m \in \mathbb{Z} \mid m=2 n+1 \text { for sone } n \in \mathbb{Z}\}
\end{aligned}
$$

D. Hilbast ~ 1900

Eny tre steterent (in math) shauld be explanable (josifitille by lagical orgunat.
1621: carjuctreed emy pasitue intger can he witten as the sum of 4 squares.

$$
\begin{gathered}
1=1^{2}+0^{2}+0^{2}+c^{2} \quad 2=1^{2}+1^{2}+0^{2}+c^{2} \\
11=3^{2}+1^{2}+1^{2}+0^{2} \\
2578=a^{2}+4^{2}+c^{2}+d^{2}
\end{gathered}
$$

Lagrage 1770 proed this!
Fermat $1637 \quad a^{3} \neq b^{3}+c^{3}$ untess b arc $=0$

$$
\begin{gathered}
8= \\
27
\end{gathered}
$$

$$
a^{4} \neq b^{4}+c^{4} \quad a^{5} \neq b^{5}+c^{5}
$$

1 have a vemorkdte prof of this, butit car't fit in tle mani..
"femst's last tlenem."
Proed in 1995 Andrew miles (at Pnisetin)
Galdhach 1742 eng even \# greatr than reat to 4 is a sumst 2 pmes. evertually provalle?

1931 Godel
Proved that any consistent frmal system able to desube anithnete of whole numlars has steterents which are tue (valid) but which carmat be gromen withi the system.
evey frmal systom is eithr incansistent or incamplete.

Ideas encode idea af provability within anithuetio.
Nonetheless: na one has found any inconsistences sa for.
an the a th hand, we have noticed varus stints which are unprovable.
well see, an example w/ infante sets son.

Are we anole? warty with sets.

Infinity
Basic infare set is $\mathbb{N}=\{0,1,2,3 \ldots\}$
we say that infinite sects be the sore sue if there is a way to put the elements in a 1-to- 1 carespandue.
ex. \#N sue as shed $\{-n \mid n \in \mathbb{N}\}$ $\{0,1,3, \ldots\} \longrightarrow\{0,-1,-2, \ldots\}$

Bus 1
Bu, 2

$$
\text { Bes } 3
$$

