Take 2

The participant draws 6 cards from a deck, and hands them to magician A. Magician A then removes one of the cards, declaring it to be the "special card," and hands it back to the participant. Magician A then arranges the remaining 5 cards into a pile and hands them to Magician B. By examining the pile of 5 cards, Magician B is then able to correctly guess what the special card is. How is it possible for them to do this?
"Hint"
By letting some of the card in the pile be face up, the trick can be done with 4 cards instead of 6

Last thin: gave lobs - examples (vim Hill art hooter) of "countaty insminte" sets.
"Cardinality" ="size of - at if ne can fund aneto in corxapmelue beaten their donuts.

$$
\begin{aligned}
& \text { ste crankily a }-\mathbb{N} \\
& \{0,1,2, \ldots\} \longrightarrow\{0,-1,-2,-3, \ldots\}
\end{aligned}
$$

$$
n \longmapsto-n
$$

$0123-\cdots$
$\begin{array}{lll}v_{1} & \sqrt{2} & \sqrt{3}\end{array}$

$$
\begin{aligned}
& y_{0}+3=\lambda_{0} \\
& \zeta_{0}^{\prime} \hat{\omega}_{0}^{\prime}=h_{0}
\end{aligned}
$$

\mathbb{R} all veal\#'s. $\quad[0,1]$

Decimals:

$$
\begin{aligned}
& 57.283 \times 927719985 \cdots \\
& 57.283+927729985 \cdots
\end{aligned}
$$

same! $\left\{\begin{array}{l}0.99999 \ldots=x \\ 1.0000 \ldots\end{array}\right.$

$$
\begin{aligned}
& 5.934999 \mathrm{k} \\
& 5.9350 \ldots \\
& 10 x=9.999 \ldots \\
& x=0.994 \\
& 9 x=9 \quad x=1
\end{aligned}
$$

Dedetaind cots
Claim: $|\mathbb{R}|>\mathcal{C}_{0}=|\mathbb{N}|$
suppaic $|\mathbb{R}|=||N|$
$1 \quad * \cdot d_{1}^{\prime} d_{2}^{\prime} d_{3}^{\prime} \ldots$
$2 * \cdot d_{1}^{2} d_{2}^{2} d_{3}^{2}$ - Ore you missed i
3 *.d.- 0.10110011
mate a 1 if $d_{1}^{\prime} \neq 1$
Canto's Jiagonalyation
$|\mathbb{N}|<\lambda_{1}^{\prime}<|\mathbb{R}|$ "continuum hypothesis"
shaw th be idfoulut if axioms by Colon.

Proofs (argumentatuss/justificatus)
Claim: Green sects A, B, re always hae

$$
A \cap B \subset A
$$

Prof. To show $A \cap B$ is aschret \& A, we need to show every ebourit of $A \cap B$ is also an element of A.

Let x be an element of $A \cap B$.
Sine $x \in A \cap B$ br demitond the intrsectua, it is in bath A and B. There it is in A.
So every elcenet $\int A \cap B$ is also an cleat at A as we wanted to show.

Claim for all ats A, R,

$$
u=\text { or } \quad n=\text { and }
$$ C then.

$$
A \cup(B \cap C) \subset(A \cup B) \cap(A \cup C)
$$

want to show that if $x \in A \cup(B \cap C)$
then $x \in(A \cup B) \cap(A \cup C)$.
So, suppose $x \in A \cup(B \cap C)$. Hen pits $x \in A$

$$
\text { ar } x \in B \cap C
$$

in either (an, reed to show $x \in(A \cup B) \cap(A \cup C)$
Cox 1 if $x \in A$ then since $A \subset A \cup B, x \in A \cup B$ sine $A \subset A \cup C, x \in A \cup C$ so $x \in(A \cup B) \cap(A \cup C)$
Case 2 if $x \in B \cap C$ then $x \in B \quad B \subset A \cup B$ so $x \in A \cup B$
and $x \in C, C \subset A \cup C$ so $x \in A \cup C$
so $x \in(A \cup B) \cap(A \cup C) r$

Show that

$$
x \cap(x \cup y)>x
$$

Want to show X is a sublet of $X \cap(X \cup Y)$
In atty wards we want to show eng element
af X is also an element of $X \cap(X \cup Y)$
Suppose $x \in X$ want to show $x \in X \cap(x \cup y)$
sa want to show by did of $\cap, x \in X$ and

$$
x \in x \cup y .
$$

By assupton $x_{0} X$.
sa just reed to show $x \in X \cup Y$.
but $x \in X$!,$X \subset X \cup Y$ so $x \in X \cup Y$

