Alice and Bob want to exchange private notes. Unfortunately, sitting between them is their "friend" Carl, who they don't really trust. Carl tries to read every note that gets passed, whenever he can. So, Alice buys a special briefcase that you can attach locks to. You can actually attach as many padlocks as you want. Alice and Bob both have their own padlocks and keys.

But they can't share the locks and keys with each other without Carl getting them. So Alice has her lock and key, and Bob has his.

The Problem:
How can Alice send a secret message to Bob without Carl being able to read it?

Solution:

- Alice puts note inliretcan, lacks it Ω^{A} - Bon addshislock $\triangle^{A B}$ - Ali ramos her lock, pass it hack $D B$ - Bah canapeuit.

Recitations now all exist!

Gradyscale z $A=$ clear evilue string mastry of topics
B = evibue of reasanibl comptane
C : some evilue of adeaucy.
D : you were here and I notred $F=$? vere you hae?

Countranumbss \mathbb{N} "He natual numlose"
Peano's Axioms of the county $\#$.
ider of "successor functra"
To dole tle conept -f natural uumbers (cauntyladd ave)

- if n is a counto uumbs, can dine a rew ave calledits successar, $S(n) \quad(S(n)=n+1)$
- if n, m are countr $\#$, and $S(n)=S(m)$ then $n=m$
- The is a numto O sich that $0 \neq S(n)$ franyn.
- If K is a sulset of the cavnty $\#$ s, such that - $0 \in K$
- whenever ne K tlen alsa $S(n) \in K$
then $K=$ all the county \#s.
from here, can develop various standard concepts

$$
t, x, \leqslant, \geqslant 1,>\text {, etceter }
$$

Example of a proof using there: either
Lemma If A is a subset of \mathbb{N}, then A has a smallest element. (there exists some $a \in A$ such that $a \leqslant b$ or $A=\phi, \quad$ all $b \in A)$

Ex:

$$
\begin{aligned}
A= & \{n \in \mathbb{N} \mid n \geqslant 5\}=\{5,6,7, \ldots\} \\
& \left\{\left.\frac{1}{x}\right|_{\substack{x \in \mathbb{N} \\
x \neq 0}}\right\}=\{1,1 / 2,1 / 3, \ldots\} \notin \mathbb{N}
\end{aligned}
$$

Prank:- Let $K=\{n \in \mathbb{N} \mid n<a$ for all $a \in A\}$ either $0 \in K$ or $0 \notin K$
if $0 \nsubseteq K$ then Here is sone $a \in A w l 0 \notin a$

$$
\left.\begin{array}{rl}
(\text { used if } 0 \geqslant a \text { Hen } \\
0=a
\end{array}\right) \quad \begin{aligned}
& 04 a \Leftrightarrow \\
& 0 \geqslant a \\
& \Rightarrow 0=a
\end{aligned}
$$

But $0=a \in A$ sa 0 is fe smallest elevert.f A. so dove.

- if $U \in K$

Hen eith A has a smallest element or it doesen't.
if it dares, we' re dove.
if it dasen't
we claim : $K=N$ and sa $A=\phi$
we'll show that $n \in k$ then sa is $S(u)=n+1$
if $n \in K$, ten $n<a$ all $a \in A$ what if $n+1 \notin K$?

Hen $n+1 \geqslant a$ sone $a \in A$
but $n \in k \quad n<a$ tin $n+1=a$

- ${ }^{\mathbf{a}}{ }_{n+1}$
but claim: $n+1=$ smallest element

$$
\ddot{a}
$$

sue l all b eA re hue $n<b$

$$
\Rightarrow \begin{gathered}
n+1 \leq b \\
a \\
a
\end{gathered}
$$

sa nt e smallest elemi.
but sine A doen't hae a smitlest ebad. this can't huppen

So $n+1 \in K$
$\Rightarrow O \in K$, wher $n \in K, n+l \in K \Rightarrow$ axiom $K=\mathbb{N}$.
\Rightarrow for eny $a \in A \quad n \leq a$ frall $n \in \mathbb{N}$
sa A can't hae any elenets mit.

Qre ve hue counly $\#$ N

$$
\mathbb{Z}=\text { pastreg } \# \text { integess } \quad Q=\begin{aligned}
& \operatorname{rat}(l \# s \\
&\left\{\begin{array}{ll}
\frac{a}{b} & \mid a, b, \mathbb{Z} \\
b \neq 0
\end{array}\right\}
\end{aligned}
$$

Last the: real \#s \mathbb{R} as "infurite desimals"

$$
\begin{aligned}
\pi & =3.1415926535 \ldots \\
& \sim 3, \frac{31}{10}, \frac{314}{100}, \frac{3141}{1000} \ldots
\end{aligned}
$$

Q. if a decimal

$$
0.333 \ldots \quad 1 / 3 \quad 0.999 \ldots=1
$$

$$
.239257 \ldots
$$

How can yo toll if a numbs is irratuinal?
Is $\sqrt{2}$ irrational? Yes $\sim 500 B C E$ Greece.
.1010101
.101001000100001000001

