There is a hallway with 50 switches numbered 1 to 50 , which are all in the off position. 50 people pass down the hallway. The first person flips every switch (turning them all on). The second person flips the switches whose numbers are a multiple of 2 (turning them off again). The third person flips the switches whose numbers are a multiple of 3 (turning some off and some on). This continues until all 50 people pass through, the last one only flipping the 50th switch.

At the end, which lights are on, and which are off?

Today Ch. 4:6
Axioms of country (Pang Axiom))
in has a sgesill "successor" ponedure which tales a number $n \rightarrow$ gives the "next" number $S(n)$
Natal \#s is a collection of thy s re call number ul a preadue S such that

- if n a numb $S(n)$ is also
a if $S(a)=S(m)$ then $n=n$
- Here's a $\# 0$ such that $0 \neq S(n)$ any n.
- "Principle afinductur"

Qi How da ve knas this males sause?
A. Gadel says: can't know.

Next hest thy: Agre to trost cane Axiom systim and ga trom the. Settlenny

If Set theny mabes suse
ten ve can model conthruti- wh ats st show Peana axions matesserse.

Procedrer constuct \#s as sits
to male this intrite: $n \longleftrightarrow$ set win eleneats.

$$
\begin{aligned}
0 \equiv \phi & n+1 \\
1 & =\{0\} \\
2=\{0,1\} & \quad S(n)=n u \\
3=\{0,1,2\} & =\{0,1\} \cup\{2\} \\
& =2 \cup\{2\} \\
0=\phi \quad 1 & =\{0\}=\{\phi\} \\
2 & =\{0,1\}=\{\phi,\{\phi\}\} \\
3 & =\{\phi,\{\varphi\},\{\phi,\{\varnothing\}\}\}
\end{aligned}
$$

Price numlass
(integrs) in class $\mathbb{N}=\{0,1,2,3, \ldots\}$
Defonitun Given natralnumlurs a, b we say that b is divisible b_{7} a (or that a divides b) il re can write $b=\overrightarrow{d a}$ forgone natural numis d. qintars)
in this case, we write $a \mid b$ "a divides b " b

- $O^{\prime \prime}$ is divisible by anythy $a / 0$ sine $0=0.9$
- 1 divides every numina $1 \mid b$ since $b=b .1$
lxi $6 \mid 42 \quad 42=6.7 \quad 42=2.3 .7$

$$
6=2 \cdot 3
$$

2,3,7 "boil dy blacks" of 42
Q: what are the basic build hacks of Its?

- $2=2$
- $3=3$
- $4=2 \cdot 2=2^{2}$

$$
\begin{aligned}
& .5=5 \\
& .6=2.3 \\
& \ddots .91=13.7 \\
& .93=31 \cdot 3 \\
& .23212=2 \cdot 2.7 .829
\end{aligned}
$$

Def A numb is called prone if it is a natural numb greater than 1 such that the only natural numbers which divide it are 1 and itself.

Q: How many prime \#s are then?
if infinite then las desuble countally infante.
Euclid: why there are intintely may gre $\#$.
If there were only fintely many, could list tern $p_{1}, p_{2}, \ldots, p_{n}$ complete list.
$m=p_{1} p_{2} p_{3} \cdots p_{n}+1$ if this was prov then it wasn't on list mme its (much) bises then author

So this is impassulte.
So this numb isn't pie.
we break up m (factrit) and at the end the preces (hates) are the numbs plop-

$$
\Rightarrow m=p_{i} l, \quad p_{i} l m
$$

but when we Divide m by pi always get a remands if 1 !
so m isu't dmable by

Division
"The Division algorithm"
Fact: for any inter $a \geqslant b$ there exist unique natual \#s d, r with $b=a d+r$ where r is a natural number with $r<|a|$
ex: " $42 / 5$

$$
\begin{array}{r}
42=5.8+2 \\
2<151
\end{array}
$$

we sup a numb r is en if it has a vemandrif 0 when divided by 2 .

$$
\begin{aligned}
& \text { wendiviled by } 2 . \\
& -\quad \text { odd }-2 .
\end{aligned}
$$

$\xrightarrow{\text { Randompraofs: }}$
eng numb r greater thin 2 is the sum famultiple of $3 \leqslant$ an even numbs.
prof: if $n \geqslant 2$ dinge hz 3

$$
\left.\begin{array}{rl}
n & =3 d+r \\
0,1,2 \\
v
\end{array}\right) \quad \begin{aligned}
n & =3 d+1 \\
& =3(d-1)+3+1=3(d-1)+4 \\
n & =0+1 \text { carthapjun! } n \geqslant 2 .
\end{aligned}
$$

"Digcosion" Th parity numbr systom.
add a

$$
\begin{array}{ll}
e+e=e & e+0=0 \\
e e=e & 0+0=e \\
e 0=e & 00=0
\end{array}
$$

even e

$$
\begin{aligned}
& e(a+0)=e 0+e 0=e+e=e \\
& e(e)=e
\end{aligned}
$$

10-anity awthmetici
[0] 0 ish reer 0 whendiuble 10
$[7]_{10} 1$ 1
$[a]_{10} \quad 9_{\text {is }}$
53 is $[3)_{10}$ tyre $\#$.

$$
\begin{aligned}
& {[3]_{10}+[6]_{10}=[9]_{10}} \\
& \begin{aligned}
\text { x-x } 3 \\
1-0=6
\end{aligned} \begin{array}{l}
{[3]_{10}} \\
{[6]_{10}} \\
{[9]_{10}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& {[7]_{10}+[8]_{10}=[5)_{10}} \\
& n \quad n \\
& n=10 \cdot d+7 \quad n+m=10(d+e)+15 \\
& m=10 \cdot e+8 \quad=10(d+e+1)+5 \\
& \quad[3]_{10} \cdot[6]_{10}=[8]_{10}^{2^{3}}
\end{aligned}
$$

$$
[7]_{12}+[11]_{12}=[6]_{12}
$$

madulor arithmetic (base 12)
Thex let you sa fun arth fects 432541

$$
\begin{gathered}
3003 \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
300 \\
315 \\
315
\end{gathered}
$$

