Math451_Lecture_Notes

Notes by Bojue Wang

$Lecture_1$

Definition 0.1. A composition law on a set S is a function $S \times S \to S$. (binary operation). Example 0.1.

$$\begin{array}{l} \mathbb{R} \times \mathbb{R} \to \mathbb{R} \\ (a,b) \mapsto a+b \\ \mapsto ab \\ \mapsto e^a b \end{array}$$

$$\mathbb{Z} \setminus \{0\} \times \mathbb{Z} \setminus \{0\} \to \mathbb{Z} \setminus \{0\}$$
$$(a, b) \mapsto a^{b}$$

Definition 0.2. A magma is a set with a law of composition.

In a magma, composition law is typically written as multiplication.

 $S \times S \xrightarrow{m} S$, $(a, b) \mapsto m(a, b)$, $a \cdot b = ab \equiv m(a, b)$.

Definition 0.3. A magma is associative if (ab)c = a(bc) for all $a, b, c \in S$.

Definition 0.4. A semigroup is an associative magma.

Definition 0.5. An (unit) identity for a composition law $S \times S \to S$ is an element $e \in S$ such that for all $s \in S$, we have se = es = s.

operator	identity
+	0
	1
$(M_n(\mathbb{R}), \cdot)$	I_n

Definition 0.6. A monoid is a semigroup with identity. $(\mathbb{Z}, \cdot), (\mathbb{Z}_{>0}, \cdot)$

Definition 0.7. If (S, \cdot) is a magma with identity and $a \in S$, we say a is invertible if there exists $b \in S$ such that ab = ba = e.

Definition 0.8. A group is a monoid such that every element is invertible.

 ~ 1830 , Galois, Abel.

Ubiquitous - groups are everywhere Rich theory - lots of highly non-trivial facts - theorems.

Remark 0.1. Inverses in groups are unique. If ab = ba = e, then b is an inverse of a and ab' = b'a = e. Then b'(ab) = (b'a)b. Since b'(ab) = b'e = b' and (b'a)b = eb = b, we have b' = b.

Example 0.2.Unit $(\mathbb{R}, +)$ $(\mathbb{R} \setminus \{0\}, \cdot)$ Inverse01-a as the inverse of a $\frac{1}{a}$ as the inverse of aVerbal perspective $a \leftrightarrow$ translate by a $a \leftrightarrow$ stretch or extend by a factor of a

For a general group (G, \cdot) , if $g \in G$, we write g^{-1} for its unique inverse.

Example 0.3. General linear group $GL_n(\mathbb{C}) = \{T \in M_n(\mathbb{C}) : \det T \neq 0\}$. The identity and inverse of element $A \in GL_n(\mathbb{C})$ can be expressed readily.

Example 0.4. Hours on a clock.

Consider the set $\{\overline{0}, \overline{1}, \ldots, \overline{11}\}$ with operation clock rotations. It forms a group $\mathbb{Z}/12\mathbb{Z}$ or $(\mathbb{Z}, +), C_{12}$.

Example 0.5. $S_X = \{f : X \to X | f \text{ is bijective}\}.$ identity $\leftrightarrow id_X$

inverse \leftrightarrow inverse function.

Exercise 1. $X = \{1, 2, 3, \}, \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \tau = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$. Find $\tau \sigma \tau^{-1}, \tau^3$ and σ^3 .