Math451 Lecture_Notes

Notes by Bojue Wang

Lecture_1

Definition 0.1. A composition law on a set S is a function $S \times S \rightarrow S$. (binary operation).

Example 0.1.

$$
\begin{aligned}
& \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \\
&(a, b) \mapsto a+b \\
& \mapsto a b \\
& \mapsto e^{a} b \\
& \mathbb{Z} \backslash\{0\} \times \mathbb{Z} \backslash\{0\} \rightarrow \mathbb{Z} \backslash\{0\} \\
&(a, b) \mapsto a^{b}
\end{aligned}
$$

Definition 0.2. A magma is a set with a law of composition.
In a magma, composition law is typically written as multiplication.

$$
S \times S \xrightarrow{m} S,(a, b) \mapsto m(a, b), a \cdot b=a b \equiv m(a, b) .
$$

Definition 0.3. A magma is associative if $(a b) c=a(b c)$ for all $a, b, c \in S$.
Definition 0.4. A semigroup is an associative magma.
Definition 0.5. An (unit) identity for a composition law $S \times S \rightarrow S$ is an element $e \in S$ such that for all $s \in S$, we have $s e=e s=s$.

operator	identity
+	0
\cdot	1
$\left(M_{n}(\mathbb{R}), \cdot\right)$	I_{n}

Definition 0.6. A monoid is a semigroup with identity.
$(\mathbb{Z}, \cdot),\left(\mathbb{Z}_{>0}, \cdot\right)$
Definition 0.7. If (S, \cdot) is a magma with identity and $a \in S$, we say a is invertible if there exists $b \in S$ such that $a b=b a=e$.

Definition 0.8. A group is a monoid such that every element is invertible.
~ 1830, Galois, Abel.
Ubiquitous - groups are everywhere
Rich theory - lots of highly non-trivial facts - theorems.
Remark 0.1. Inverses in groups are unique. If $a b=b a=e$, then b is an inverse of a and $a b^{\prime}=b^{\prime} a=e$. Then $b^{\prime}(a b)=\left(b^{\prime} a\right) b$. Since $b^{\prime}(a b)=b^{\prime} e=b^{\prime}$ and $\left(b^{\prime} a\right) b=e b=b$, we have $b^{\prime}=b$.

		$(\mathbb{R},+)$	$(\mathbb{R} \backslash\{0\}, \cdot)$
Example 0.2.	Unit	0	1
	Inverse	$-a$ as the inverse of a	$\frac{1}{a}$ as the inverse of a
	Verbal perspective	$a \leftrightarrow$ translate by a	$a \leftrightarrow$ stretch or extend by a factor of a

For a general group (G, \cdot), if $g \in G$, we write g^{-1} for its unique inverse.
Example 0.3. General linear group $G L_{n}(\mathbb{C})=\left\{T \in M_{n}(\mathbb{C}): \operatorname{det} T \neq 0\right\}$. The identity and inverse of element $A \in G L_{n}(\mathbb{C})$ can be expressed readily.

Example 0.4. Hours on a clock.
Consider the set $\{\overline{0}, \overline{1}, \ldots, \overline{1}\}$ with operation clock rotations. It forms a group $\mathbb{Z} / 12 \mathbb{Z}$ or $(\mathbb{Z},+), C_{12}$.

Example 0.5. $S_{X}=\{f: X \rightarrow X \mid f$ is bijective $\}$. identity $\leftrightarrow i d_{X}$
inverse \leftrightarrow inverse function.
Exercise 1. $X=\{1,2,3\},, \sigma=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right), \tau=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$. Find $\tau \sigma \tau^{-1}, \tau^{3}$ and σ^{3}.

