Pani trday inext tine: inurtble slaes, divisuss, mups to prej.spe.
a few wods a bat blong up.

- Formal schemes, gluy, adic spaces
- Differentrals/smooth mighsus, etale moogharset. \rightarrow cotangent conplex \rightarrow denved sclus? \}
- cohomolgy étalecohom. un étaletonnlyy

Last tree fo a ry A, an A-sclere X ve saw $\operatorname{Hom}\left(X, \mathbb{P}_{A}^{n}\right)=\widetilde{\mathbb{P}}_{A}^{n}(x)$

$$
\theta_{x}^{n+1} \rightarrow \mathcal{L}_{a+1}^{\downarrow^{2}}=\left\{\theta_{x}^{n+1} \rightarrow \mathcal{L}^{\mathcal{L}} 1\right.
$$

$$
\theta_{x}^{a+c} \rightarrow j^{\prime}
$$

can thank of a mouphom $\ell: x \rightarrow \mathbb{P}_{A}^{n}$ as an inu shof $\mathcal{L} \dot{\varepsilon}$, tuple 1 gohal sectors $s_{0}, s_{n} \in \Gamma(\mathcal{L})$

$$
x \longmapsto\left[s_{0}(x): \ldots i s_{n}(x)\right]
$$

$\varphi: x \rightarrow \mathbb{P}_{A}^{n}$ delind by $h_{\varphi}: h_{x} \rightarrow h_{\mathbb{P}_{B}^{\prime}}$ fonctss eitto in
Sch / A or $(A-a y)^{\rho} \quad \frac{\vec{P}_{n}^{n}}{n}$

$$
\begin{aligned}
& h_{x}(B) \longrightarrow h_{\mathbb{P}_{A}^{n}}(B)=\mathbb{P}_{A}^{n}(B) \\
& X^{\prime \prime}(B) \quad "\left\{p m j \cdot r k 1 P \omega / B^{n} \rightarrow P\right\} \\
& \left(\begin{array}{l}
\text { if } X \text { zuras } S h_{1}-i_{N} \\
\text { in vers } T_{1}-T_{M}
\end{array} \text { i.e. } X=S_{f, c} A\left[T_{1}-, T_{M}\right] /\left(f-S_{N}\right)\right. \\
& \text { Hhen } X(B)=\left\{\vec{b}_{i}\left(b, m, b_{m}\right) \in B^{m} \mid f_{i}(\vec{b})=0 \text { all } i\right\} \\
& A[T, \cdots](\vec{P}) \rightarrow B)
\end{aligned}
$$

grea $\varphi: X \longrightarrow \mathbb{R}_{A}^{n}$ buan $\theta_{x}^{n+1} \xrightarrow{\pi} \mathcal{L}$ and gren

$$
\begin{aligned}
& b \in X(B)(b: \sec B \rightarrow X) \quad b^{x} \theta_{x}^{n+1} \xrightarrow[b^{n} \pi]{b^{n}} b^{\times 2} \underset{\sim}{n+1} \\
& \theta_{\text {anc } B}^{n+1} \\
& \text { coreop to } B^{n+1} \rightarrow P
\end{aligned}
$$

Ramerk: Con globilye this:
for ε / s rk $n+1$ loc.fue $s d f$ of θ_{S} mades

if Spee $A \subset S$ afte gon sht. $\left.E\right|_{\text {spe } A}$ is fee

$$
\text { Set } \begin{aligned}
\widetilde{\mathbb{P}}_{s}(\varepsilon)(x) & =\{\varepsilon \rightarrow \mathcal{L} \mid \mathcal{L} \text { invertble }\} \\
\sim & \sim
\end{aligned}
$$

Hen (chaim) $\widetilde{\mathbb{P}}_{s}(\varepsilon)$ is a shef and -

$$
\begin{aligned}
& \text { (claim) } \mathbb{P}_{S}(\varepsilon) \text { is a shet ana } E l_{u} \text { is free } \\
& \text { it } B=\text { cat } f \text { gen in } S \text { sit. } \hat{l} \text { es }
\end{aligned}
$$

then $\left.\widetilde{\mathbb{P}}_{s}(\varepsilon)\right|_{\mathcal{B}}=\left.h_{P_{m j_{0}} \operatorname{sim}_{\theta_{s}} \varepsilon}\right|_{B}$

$$
\Rightarrow \widetilde{\mathbb{P}}_{s}(\varepsilon)=h_{\operatorname{Prg}_{\theta} \sin _{s}} \sin _{\theta_{s}}
$$

Ref $\mathbb{P}(\varepsilon)=$ Pro $_{-1 \theta_{s}} S_{y m}^{m} \theta_{s}^{\varepsilon}$
if ε is lac. fee not fee $\mathbb{P}(\varepsilon) \neq \mathbb{P}^{n}$

$$
\varepsilon \rightarrow \mathbb{P}(\varepsilon)
$$

it ε foe then $\varepsilon \leadsto \theta_{x}^{n} \quad E \simeq A^{n+1}$

$$
\begin{array}{r}
\varepsilon=\tilde{E} \\
\mathbb{P}(\varepsilon) \simeq \mathbb{P}_{A}^{n}
\end{array}
$$

Q: How to constrict maps $X \rightarrow \mathbb{P}_{A}^{M}$?
Abases need me bundle f sig global actors.
green $s_{0, \ldots}, s_{n} \in \Gamma(x, \varnothing)$
$\theta_{x}^{n+1} \longrightarrow y$ consider fo any s_{i} its vanish lows.
$\mathcal{L} \nsim \theta_{x}$ wi locally $\mathcal{L} \simeq \theta_{x}$.
change $s \in \Gamma(\mathcal{L})$, the or any $U \mathrm{U} / \mathcal{L} l_{u} \simeq \theta_{u}$ choosy an iso $t: \mathcal{J} / u \rightarrow \theta_{u}$ can consider ideal cut of $b_{y} \psi_{(1)}$) and this davere't dyad ont.'

$$
\begin{aligned}
& d l_{s_{i}}=\text { gen on } d \text { by } \psi\left(s_{i}\right) \in \theta_{x}(u)=\theta_{u}(u) \\
& \mathscr{L} \|_{u} \xrightarrow{*} \theta_{u} \\
& T_{\text {mull }} \text { by } r \in \theta_{u}(u)^{*} \\
& \underset{\sim}{ }{ }^{\prime} \theta_{u} \\
& \text { i.e. } \psi\left(s_{i}\right)=r . \psi^{\prime}\left(s_{i}\right)
\end{aligned}
$$

$s \in \Gamma(\mathcal{A})$ vansles at $p \in X$ means that vir

$$
\psi, \psi(s)_{p} \in m_{x p}
$$

or $s_{p}+M_{p} \mathcal{L}_{p}$

$$
\begin{gathered}
\mathcal{L}_{l_{u}} \rightarrow \theta_{u} \\
\mathcal{L}_{p} \xrightarrow{\sim} \theta_{x_{i}} \\
m_{p} \mathcal{L}_{p} \ldots m_{p} \theta_{x_{p}}
\end{gathered}
$$

Natse: $Z\left(s_{i}\right)$ (scholore corexp to $\ell_{s_{i}}$) is clond sne its locslly clored.
and if $p \notin Z\left(s_{i}\right)$ then $\theta_{x, p} \rightarrow \mathscr{L}_{p} \simeq \theta_{x p}$ $1 \longmapsto\left(s_{i}\right)$ is sojucte

Ref if all s_{i} 's vanush at P ne $s y P$ is a biepurt of $\left\{s_{0}, s_{n}\right\}$
if $U=X\left\{\right.$ barepts\} $U_{\text {is }}$ is an and

$$
\cap z\left(s_{i}\right)
$$

re hae a sugecton $\theta_{u}^{n+1} \rightarrow \mathcal{L} l_{u}$ get amphism $u \longrightarrow \mathbb{P}_{A}^{\mu}$

Lato, ve'll see gien $s_{0}-, s_{n} \in \Gamma(f)$ then $\exists \tilde{X} \rightarrow X$ (blomp) sit.
hae amophom (pmor bint l)

$$
\underset{x}{\tilde{x}} \longrightarrow_{j}^{\pi /} \mathbb{P}_{A}^{n} \quad \text { andul }
$$

Can globnalize

$$
\dot{\varepsilon} \rightarrow \mathcal{y}!
$$

Dinisers
Recall: if R any, $r \in R$ ryulor if $r \neq 0 s_{1}$

$$
a r=0 \Rightarrow a=0 .
$$

Lem $r \in R$ yjler $\Longrightarrow \frac{r}{1} \in R_{p}$ reyles all fotyec R

$$
\begin{aligned}
& \text { Pfi }(\Rightarrow) \text { if } \frac{r}{1} \frac{a}{s}=0 \text { wls\&f the rat }=0 \\
& \text { sore } t \neq p
\end{aligned} \quad \begin{aligned}
& (r \mathrm{~g} l v) \text { at }=0 \Rightarrow \frac{a}{7}=0 \text { in } R_{f} \Rightarrow \frac{a}{s}=0
\end{aligned}
$$

(\Leftarrow) if $\frac{n}{1}$ gulv all p, suppace as $=0$.

$$
\begin{aligned}
& \text { then } \frac{a}{1} \cdot \frac{n}{1}=0 \Rightarrow \frac{a}{1}=0 \text { in } R_{f} \Rightarrow \exists t \notin p, t=0 \\
& \Rightarrow a_{R}(a) \& R_{p} \text { any } \& \Rightarrow a n \Rightarrow R^{(a)}=R \\
& 1 \cdot a=a=0 .
\end{aligned}
$$

Def. The totel of f fratons $f R, Q(R)=R\left[S^{-1}\right]$ $S=$ \{redlodevents $\}. ~ R \rightarrow Q(R)$.
Ret for a store X, set K_{x} to he the sluf ganky

$$
K_{x}(u)=Q\left(\theta_{x}(u)\right)
$$

shatificato a t the (regoated) pustus abre.
W_{X} is aice becavein nice circumtaves, inveotille slous are silsleacs $\sqrt{ } K_{X}$.

Affecor, ve're suy, P a 1 porjor R, can embad $P \hookrightarrow Q(R)$

Prop If X is integral (and so $K_{x}=$ constont) then any \mathcal{L} iwthle is \simeq to culolur of K_{X}.
$\hat{\theta}_{x-m d}$
PD. Consid $\mathcal{L} 0_{\theta_{x}} K$

$$
\mathcal{L} \|_{u} \xrightarrow{\tau} \mathcal{L} l_{u} \sigma_{o_{u}} K_{u} \quad \mathcal{L} u \approx Q_{u}
$$

$$
\theta_{u} \longrightarrow \theta_{u}^{\theta} \theta_{u} \not K_{u}
$$

$\theta_{u} \longrightarrow K_{u}$ injectue

$$
\Rightarrow \mathcal{L} \rightarrow \mathcal{L} \otimes K_{x} \text { la. } \mathrm{mj}_{\mathrm{j}} \rightarrow \mathrm{inj} \text {. (slof) }
$$

Clam: $\operatorname{Lo}_{0} K_{x} \simeq K_{x}$
hath sides ae glohal seotions (ohpets) in the stack Q_{x}-mad
choose $\left\{u_{i} \xi\right.$ cor st. $\left.\mathcal{L}\right|_{u_{i}}=\theta_{u_{i}}$

$$
\left.\theta_{x-\operatorname{mad}}(x) \xrightarrow{\sim} D_{\text {sc c }}\left(\xi u_{i}\right\}, \theta_{x}-\operatorname{md}\right)
$$

$\hat{\theta}_{x} x^{-m a d}$

$$
\begin{aligned}
& \stackrel{\mathcal{L}}{r^{-m a v}} \longrightarrow\left(\left(\left.\mathcal{L}\right|_{u_{i}}\right)_{i},\left(1_{i j}\right)\right) \\
&\left(\theta_{u_{i}}\right. \\
& \mathcal{L} l u_{u} / u_{i}
\end{aligned}
$$

$$
\begin{aligned}
& u_{i} \cap u_{j} \text { iso } 1_{i j}:\left.\mathcal{L}\left|u_{i}\right|_{u_{i j}} \rightarrow \mathcal{L} u_{j}\right|_{u_{i j}} \\
& \mathcal{L}^{\prime \prime}{ }_{u_{i j}} \mathcal{L} l_{u i j} \\
& \mathcal{L} l_{u_{i}} \xrightarrow{\varphi_{i}} \theta_{u_{i}} \\
& \left.\left.\mathcal{L}\right|_{u_{i} \mid u_{i j}} \xrightarrow{ } \mathcal{L}\right|_{u_{j}} \mid u_{i j} \\
& \text { qilij }\rfloor\left\lfloor\varphi_{j} l_{i j}\right. \\
& \theta_{u_{i j}}=\theta_{u_{i} \mid u_{j j}} \xrightarrow[\varphi_{i j} \in \mid s a \theta_{u_{i j}}]{\left.\left.\varphi_{j}\right|_{i j} \varphi_{i j}\right|_{i j} ^{-1}}\left(\left.\theta_{u_{j}}\right|_{i_{i j}}=\theta_{u_{i j}}\right) \simeq \theta_{x}\left(u_{i j}^{*}\right)^{*}
\end{aligned}
$$

$$
\left(\left\{\mathcal{L} \mid u_{i}\right\},\{1\}\right) \underset{\text { in } \operatorname{Desc}\left(\left\{u_{i}\right)\right)}{\simeq\left(\left(\theta_{u_{i}}\right\}, \varphi_{i j}\right)}
$$

similarly, re find

$$
\begin{aligned}
& \mathcal{L} \theta_{\theta_{x}} \kappa_{x} \rightarrow\left(\left\{\mathcal{L O} K_{x}\left(u_{i}\right\}, S 1\right\}\right) \\
& 12 \\
& \left(\left\{\alpha_{u_{i}}\right\}, \varphi_{i j}\right) \\
& \hat{\theta}_{x}^{n}\left(u_{i j}\right) \\
& \psi_{u_{i j}} \xrightarrow{\cdot \varphi_{i j}} *_{u_{i j}} \quad \alpha_{x}\left(u_{i j}\right)
\end{aligned}
$$

Cham: $\mathcal{L}_{\theta_{x}} K_{x} \simeq K_{x}$ via

$$
\left(\left\{\alpha_{u_{i}}\right\}, \varphi_{i j}\right) \simeq\left(\left\{{\left.\left.k_{u_{i}}\right\}, 1\right\}}^{v^{a}}\right.\right.
$$

Der
Notice: $\varphi_{i k}=\varphi_{j k} \varphi_{i j}$ all i,j,k (think of this

$$
\begin{aligned}
\text { in } K_{x}\left(u_{i j k}\right)^{*} & \quad \begin{aligned}
& \text { an anear in } \\
& K_{x}=T\left(K_{x}\right) \\
& \varphi_{i i} \varphi_{i ;}
\end{aligned} & =K_{x}(u)
\end{aligned}
$$

have $\varphi_{i i}=\varphi_{i i} \varphi_{i}$

$$
\Rightarrow \varphi_{i i}=1 \quad 1-\varphi_{i i}=\varphi_{j i} \varphi_{i j} \Rightarrow \varphi_{j i}=\varphi_{i j}^{-1}
$$

$$
\varphi_{i j}=\varphi_{1 j} \varphi_{i 1}=\varphi_{i j} \varphi_{i}^{-1}
$$

Whe amap $\left(\left\{K_{u_{i}}\right\}, \varphi_{i j}\right) \quad K_{u_{i}}$

$$
\begin{array}{cc}
\uparrow & \uparrow \cdot \varphi_{1 i} \\
\left(\left(k_{u_{i}}\right), 1\right] & \kappa_{u_{i}}
\end{array}
$$

$$
\begin{align*}
& K_{u_{i} l_{i j}} \xrightarrow{\substack{\varphi_{1 j} \varphi_{1 i}^{-1} \\
\varphi_{i j}}} K_{u_{j}} l_{i j} \\
& \varphi_{1 i} \uparrow \quad \uparrow \varphi_{1 j} \Rightarrow K_{x} \simeq \mathcal{L}_{Q_{x}} K_{x} . \\
& K_{u_{i l j}} \xrightarrow[1]{ } K_{u_{j} l_{i j}}
\end{align*}
$$

X intyral, can actrally see $K_{X}=i_{*} \theta_{\text {efec } k(X)}$

$$
\begin{aligned}
& k(x)=f 1 \text { of } x \\
& \text { Soce } k(X) \xrightarrow{\imath} X \text { inclusu-n fgapt. } \\
& \operatorname{Sock}(X) \rightarrow \operatorname{Soc}_{\text {p }} A \\
& K_{x}=k(x) \longleftarrow A
\end{aligned}
$$

(Natai: stoll tre If Xpij/feld)
(check apectes)

$$
\mathcal{L} \longrightarrow \mathcal{K}_{x} \quad f_{i} \propto s_{i} \simeq 1
$$

chave $\left\{u_{i}, f_{i}\right\} \quad f_{i} \in K_{x}(u)$

$$
\text { gen (im.t) } \mathcal{A}
$$

$f_{i} \|_{u_{i j}}, f_{j} l_{u_{i,}, g_{n}}$ soe $\operatorname{shn} 0 d$ of $K_{u_{i j}}$

$$
\Rightarrow f_{i}=u_{i j} f_{j} \quad u_{i j} \in \theta_{x}\left(u_{i j}\right)^{4}
$$

it malles sina to consdr $d_{i v}\left(f_{i}\right)$ (zeros scples)
i.e. $\quad\left(U_{i}, f_{i}\right) \longrightarrow$ locally priged Weil dims.

Det A corter dinsws is a coloetan $\left(u_{i}, f\right)$ u_{i} car $f_{i} \in \alpha_{x}\left(u_{i}\right)^{*}$ s.l.

$$
f_{i}=u_{i j} f_{j} \text { on } u_{i j} \quad u_{i j} \theta_{x}\left(u_{i j}\right)^{*}
$$

$$
\sim
$$

via refo genest

$$
\begin{aligned}
\left(u_{i}, f_{i}\right) & \sim\left(u_{i}, g_{i}\right) \text { if } \\
f_{i} & =v_{i} g_{i} \quad v_{i} \text { mit. }
\end{aligned}
$$

