Last tre: euled al def of (formally) smooth, uwam., étale morphisms.
Today' plan is cohom/derred fuctrs/iden of dorindats.
Lato derved ideus...

Cohomology of sheves
"Remmondr" smooth manifulds
velean a numbr if frmulations of colom
X sm.manbld tringlation $H_{\text {simp }}^{n}(X, A) \mathbb{\mathbb { R }}$

$$
H_{s i y}^{u}(x, A)
$$

de Rham colom $\quad \Omega^{0}(X, \mathbb{R}) \xrightarrow{d} \Omega^{\prime}(X, \mathbb{R}) \xrightarrow{d} \ldots$

$$
H_{\text {de }}^{n}(X, \mathbb{R})=\text { Cohom } f^{C^{\infty}(X, \mathbb{R})} \overbrace{\text { agnee })}^{(\text {s.there } 1}
$$

Two featres:

- Gre vise to vanus LE cageves
- de fham computed al vesolutons.
syds $0 \rightarrow A \rightarrow B \rightarrow C-0$

$$
\left.H^{n}(x, A) \rightarrow H^{-}(t, B) \rightarrow H^{\prime}(x, C) \rightarrow H^{n+1}(x, A)\right\rangle
$$

lea of tuday, it ne gewalge our noton of cofficents, then $H^{\circ}(x,-)$ are unsolly detind by) thi propety

$$
A=A b \cdot o p
$$

Len: $n=0 \quad H^{0}(X, A)=\Gamma(X, A)$

$$
\begin{aligned}
0 \rightarrow \Gamma(x, \underline{A})-\Gamma(x, \underline{B}) \rightarrow \Gamma(x, \underline{C}) & \rightarrow R^{\prime} \Gamma ? \\
\operatorname{Mags}^{\prime \prime}(x, A) & \underline{R} \neq C^{\infty}(-, \mathbb{R})
\end{aligned}
$$

A "Slef $A^{\prime \prime}=\left(u-M_{\text {mant }}^{\text {cont }}(u, A)\right)$
Comptatanal rethod: Frd a candedste is B wl A $A \hookrightarrow B$; wher $\left(? R^{i} \Gamma(x, B)=0\right)$ $\ldots \Gamma(x, B) \rightarrow \Gamma(x, \underline{B}) \rightarrow R^{\top} \Gamma(x, \underline{A}) \rightarrow 0$

Ref $R^{\prime} \Gamma(x, \underline{A})=\operatorname{coks}(\Gamma(x, B) \rightarrow \Gamma(x, s))$

$$
\underline{C}=\underline{B} / A
$$

What ensurs this b B?
Cantertral, but in smootheetty: soft
example: $\Omega^{i}(-, \underline{A})$ soft.
Main punchlue f cohom:
ve con campte $H^{n}(X, A)$ by choog an exact sq of slanes

$$
A \rightarrow S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow
$$

$$
\begin{aligned}
& \mathrm{J}_{2} \\
& \text { soft shous }
\end{aligned}
$$

i.tlen $H^{n}(X, \underline{A})=H^{n}\left(\Gamma\left(S_{0}\right) \rightarrow \Gamma(S) \cdots\right)$ thisistle def fred hy considraton of
ex $\quad \mathbb{R} \rightarrow S^{\circ}(-, \mathbb{R}) \rightarrow \Omega^{\prime}(\ldots, \mathbb{R}) \rightarrow .$. eract son Atslues.
Columalyy V.

Alydraic generty
Fondavental problems in AG

1) green an instille daf \mathcal{L} on X, compte $\Gamma(x, \alpha)$
2) find an algyraic analage of $H_{d R}^{M}$

$$
\text { or } H_{\text {soy }}^{n} \text { - ? }
$$

Fowsom 1: main isse is worly w/ comedun to $g^{h t}$ exadress.
find corector foms to ryht excetress. If solobal sectuns.
Stauderd homologieal havework:
Unisersal S-furctrs:
gren a fundr (left exat)
$C \xrightarrow{F} D$ adite fundr. hetuen Ablion catyoes

$$
\begin{aligned}
(\text { exi } C & =\text { shever f Al. grs an } X \\
(D & =A b \cdot O T s
\end{aligned}
$$

$$
F=\Gamma
$$

Wanti a sequene of functs
$R^{i} F$ wl $R^{\circ} F=F$ and sch that
ghen ses $u \rightarrow M^{\prime \prime} \rightarrow M \rightarrow M^{\prime} \rightarrow 0$ in Q

$$
\text { getalES } \begin{aligned}
0 & \rightarrow R^{0} F M^{\prime \prime} \rightarrow R^{0} F M \rightarrow \ldots \\
& +\quad R^{i-1} F M^{\prime} \rightarrow R^{i} F M^{\prime \prime} \rightarrow R^{i} F M
\end{aligned}
$$

and s.t. gren a morphism of SES's

\[

\]

gt a morghim of LES's.

$$
\begin{aligned}
& \rightarrow R^{i} F M^{\prime \prime} \rightarrow R^{i} F M \rightarrow-\cdots \\
& \rightarrow R^{i} F N^{\prime \prime} \rightarrow R^{i} F N \rightarrow \ldots
\end{aligned}
$$

Ret a δ-functs $C \rightarrow D$ is a saq. of furts $T^{i}: C \rightarrow D$ st. SESinem LES in D
i.e. get a foucts $\operatorname{SES}(C) \underset{\operatorname{Seg}(T)}{\longrightarrow} \operatorname{LES}(D)$

Def $A \delta$ funts T is unorsal if \forall oth δ. $\ln d, T: C \rightarrow\left(\right.$ and $f^{0}: T^{0} \rightarrow 7^{10}$ natral tras
\exists ! squere of nat. tras. $f^{i}: T^{i} \rightarrow T^{i i}$ it.

$$
0 \rightarrow M^{\prime} \rightarrow M \longrightarrow M^{\prime} \rightarrow 0
$$

Hen $\quad T^{i} M \rightarrow T^{i} M^{\prime} \rightarrow T^{\text {ir- }} M^{\prime \prime}$ connuts)

$$
\begin{array}{ll}
\left.f^{i} M!f^{\prime} M^{\prime}\right\rfloor & f^{i+1} M^{\prime \prime} \\
\rightarrow T^{i} M^{\prime} \rightarrow T^{i+1} M^{\prime \prime}
\end{array}
$$

unis. δ fundlos are unique.

$$
\operatorname{Hom}_{\delta}\left(T, T^{1}\right)=\operatorname{Hom}_{\text {Vand }_{n}}\left(T^{0}, T^{0}\right)
$$

Def A fach $F: C \rightarrow D$ is elf-calle if $\forall \operatorname{caC} \exists c^{\prime} \in C$ and a mono $c \rightarrow c^{\prime}$ s.t.

$$
F\left(c^{\prime}\right)=0
$$

Thm (Gooth.) If $T=\left(T^{i}\right)$ a δ fucts, it is uniu. if each $T^{i}, i>0$ is effible.

Biy-hrimaton: if C has enoughinjecter (i.e. all e admit $c \rightarrow c$ ' c 'ingecte ofed) then onv. ©-fados exisl.
\mathcal{L} insuluf $\Gamma(\mathcal{J})$
notaton: if T is a unv. selto fado $\mathcal{d} T^{0}=F$ re call $T^{i \prime}$ s the ith satellute or $i^{\text {th }}$ rght drived fincts. $f F$, write it $R^{i} F=T^{i}$

Small mumble: we are rutrated in Γ of coherent ($\xi, \alpha c u s$ onally 6 -coh.) shaes. Ni.e $A b$ cat.
But - not enayhinjectes.
Fix: $\quad \operatorname{Coh}(x) \longrightarrow O \operatorname{Coh}(x) \rightarrow \theta_{x}$-mad enaushimectes candfe nut omed Buctus

Def (sheat cohomology) \mathcal{I} a shlif Q_{x}-ands

$$
H^{n}(x, 7) \equiv R^{n} \Gamma(\ni)
$$

Conuelely, can conpste as follows: cexact. chaar $f \subset d_{0} \rightarrow l_{1} \rightarrow \ldots$
thirijecte slif

$$
H^{n}(x, f)=H^{n}(\Gamma(20))
$$

What does torology hue tu douith this?
Colom is a correcton fectr fo sujecturty if shoer masuj of global secturs.
Topolegy ma noturn frojj of sheres.
$X=$ some vorety our \mathbb{C}
$\theta_{x}^{*} \xrightarrow{-2} \theta_{x}^{\alpha} \quad$ this is not shert Zrioki suppecte, shert Ah.gps $f \in \theta_{x}^{*}(a)$ but is sury. instaded
of analytictop.

$$
\begin{aligned}
& x=S_{0<k[t]} \\
& u_{*}^{c} \\
& f=t \\
& v_{t} \in k(t) \text { no } 0 .
\end{aligned}
$$

Rf X a scleve, $X_{\text {at }}$ is the G oth top on cat $w l$ ohects
$u \xrightarrow{\bullet} X \quad$ fötrile and cows $\left\{u_{i} \xrightarrow{f_{i}} x\right\}$ fictale: gooth soj
U scheve-thiticimps $=X$
Punchive: much dauto analytie - étele sij. v.closeto an. $\mathrm{si}^{2} \mathrm{j}$.

$$
\text { (e.j. sm- } 2 \text { proj vos) }
$$

Thig 2: δ fands useti, but philosophically. Betterpsocte:
drued motie

Sheres/ $X \longrightarrow H^{\circ}()$

Verdien
comght/drred cat.f slaves.
$\frac{f \times \operatorname{lol} \rightarrow l_{1} \rightarrow . .}{\Gamma}$

$$
\begin{aligned}
0 \rightarrow & \mathcal{F} \rightarrow 0 \rightarrow 0 \\
& \downarrow \\
0 \rightarrow & U_{0} \rightarrow-l_{1} \rightarrow \ell_{2} \\
& R \Gamma(F)=\left(\Gamma\left(l_{0}\right) \rightarrow \Gamma\left(\ell_{1}\right) \rightarrow-\right)
\end{aligned}
$$

