Math 6020, Graduate Algebra, Fall 2024, Homework 5 Instructor: Danny Krashen

Discussing the problems with other people is encouraged, but you must write up your own work independently!

- 1. Give an example of a non-Noetherian X-module M which contains a maximal element.
- 2. Suppose $\phi: M \to M$ is a nontrivial (not uniformly 0) X-module homomorphism. Show that if M is simple then ϕ is bijective.
- 3. Let M be an X-module. Show that if N, S < M with S simple then either N + S = N or $N + S = N \times S$.
- 4. Suppose G₁ ⊂ G₂ ⊂ · · · is an increasing sequence of X-groups.
 (a) Show that G = ∪G_i is an X-group.
 - (b) Show that if each G_i is a simple X-group then so is G.
 - (c) Consider the inclusions of alternating groups A₅ ⊂ A₆ ⊂ · · · where we have inclusions by considering each of these as permutations of N (which fix sufficiently large integers).
 Using the fact that A_n is simple for n ≥ 5, give an example of a simple group G and a nontrivial (not uniformly equal to e) homomorphism φ : G → G which is not bijective.
- 5. Let $X = \mathbb{R}$ and let $X^+ = \mathbb{R} \cup \{x\}$. Consider $M = \mathbb{R}^2$ as an X-module using its usual vector space structure.
 - (a) Can this structure be extended to an X^+ module so that M becomes indecomposable?
 - (b) Can this structure be extended to an X^+ module so that M becomes simple?

6. (optional) Let X = {x}. Consider the Abelian group M = Z/2Z × Z/2Z.
(a) Can we define an X-module structure on M so that it becomes indecomposable?

(b) Can we define an X-module structure on M so that it becomes simple?

7. (optional) Give an example of an X-module M and submodules N, S < M with S indecomposable and with both $N + S \neq N$ and $N + S \neq N \times S$.

8. (optional) Exhibit an X-module M and submodules H, K, N < M with $H \cap N = K \cap N$ and with (H+N)/N = (K+N)/N in M/N but with $K \neq H$.

9. (optional) Suppose $\phi: G \to G$ is an X-group homomorphism which is bijective. Show that ϕ^{-1} is also an X-group homomorphism.