Math 6020, Graduate Algebra, Fall 2024, Homework 7

Instructor: Danny Krashen

Discussing the problems with other people is encouraged, but you must write up your own work independently!

- 1. Let R be a ring and let C be the category of left R-modules. Let $\mathrm{id}_{\mathcal{C}}$ be the identity functor from C to itself. For an element $r \in Z(R)$ in the center of R, we may define a natural transformation $\lambda_r : \mathrm{id}_{\mathcal{C}} \to \mathrm{id}_{\mathcal{C}}$ by letting $\lambda_r(M) : M \to M$ be given by scalar multiplication by r.
 - (a) Show that λ_r is indeed a natural transformation.
 - (b) Show that if φ : id_C → id_C is any natural transformation, φ is determined by φ(R) : R → R. That is, by its value on the left R-module R. *hint:* to determine the action of the map φ(M) : M → M on an element m ∈ M, consider the R-module map R → M taking 1 to m.
 - (c) Show that $Hom_{Fun(\mathcal{C},\mathcal{C})}(\mathrm{id}_{\mathcal{C}},\mathrm{id}_{\mathcal{C}}) \cong Z(R)$ as monoids, where the operation in Z(R) is given by multiplication and where the operation in $Hom_{Fun(\mathcal{C},\mathcal{C})}(\mathrm{id}_{\mathcal{C}},\mathrm{id}_{\mathcal{C}})$ is given by composition.
- 2. Let $F: C \to D$ be a functor between categories which is full, faithfull and essentially surjective. Choose for each $x \in ob(D)$ an object $Gx \in ob(C)$ and an isomorphism $f(x) : x \to FGx$. For a morphism $g: x \to y$ in D, let $\tilde{g} = f(y)gf(x)^{-1} : FGx \to FGy$. Let Gg be the inverse image of \tilde{g} under the map $F: Hom_C(Gx, Gy) \to Hom_D(FGx, FGy)$.
 - (a) Show that G defines a functor $D \to C$.
 - (b) Show that f defines a natural transformation which gives an isomorphism of functors from id_D to FG.
 - (c) For $a \in ob(C)$, show that you have bijections

$$Hom_C(a, GFa) \cong Hom_D(Fa, FGFa) \cong Hom_D(Fa, Fa) \cong Hom_C(a, a)$$

- (d) Using these bijections, show that the elements $g(a) \in Hom_C(a, GFa)$ corresponding to the identity in $Hom_C(a, a)$ as a varies, define a natural transformation $id_C \to GF$.
- (e) Show that F is an equivalence of categories.