And now to soverthy completely differents
Question Green a split extension
NAG
$$G_{N} \stackrel{e}{\rightarrow} \sigma G$$
 s is going hare.
How many other choices it s can be in the in coherently.
How many other choices it s can be made?
H = s(G/N) < G obtaine that HCN via conjugation.
green some other g^{2} : $H \longrightarrow G$ sectors
 $(G(N))$
 $s'(h) = p(h) s(h) p(h) eN p: H \rightarrow N$
 $s'(h_{1}h_{2}) = s'(h_{1})s'(h_{2})$
 $h_{1}h_{2}$
 $p(h_{1}) s(h_{1}) p(h_{2}) s(h_{2}) s(h_{1}) s(h_{1}) s(h_{1}) s(h_{2}) s($

(3) and
Greve
$$1 \rightarrow N \rightarrow 6 \xrightarrow{\pi} 6/N \rightarrow 1$$
 exact
given $H < G$ as sector
i.e. $H \rightarrow 6 \xrightarrow{\pi} 6/N$
Prop Green
 $B:H \rightarrow N$
Here the way $s:H \rightarrow 7 G$ given by
 $h \rightarrow \beta(h)h$ is an inclusion
 $(= homorphon)$
 $iH \beta \in \mathbb{Z}^{1}(H,N)$
and $get a bijecton \{s:H \rightarrow G homs sl.\}$
 $H \xrightarrow{5} G \xrightarrow{\pi} 6/N$
and $\mathbb{Z}^{1}(H,N)$
and $\mathbb{Z}^{1}(H,N)$
 $and \mathbb{Z}^{1}(H,N)$
 $and \mathbb{Z}^{1}(H,N$

$$s'(n) = n s(n) h^{-1} = n p(h) h n^{-1}$$

$$= n p(h) h n^{-1} h^{-1} h$$

$$= n p(n)^{h}(n^{-1}) h$$
i.e. $s' \longrightarrow new p^{h}$

$$p(h) = n p(n)^{h}(n^{-1})$$

$$Def \quad if \quad q, q' \in Z'(H, N) \qquad N \text{ is an H-group}$$

$$ne > q \quad p \sim q' \quad if \quad \exists n \in \mathbb{N} \quad s.f.$$

$$q'(h) = n \quad q(h) \quad h(n^{-1})$$

$$Ex: \quad con \ check \quad that \quad \mathbb{N} \quad acts \quad n \quad the \quad p.nhol \quad set$$

$$Z'(H, N) \qquad vin \quad n \cdot q = q' \quad aba = e$$

$$So \quad Z'(H, N) \quad is \quad an \quad N - set. \quad arbits \quad are$$

$$called \quad H'(H, N). \quad 1 - cohavely pointed set$$

$$d + H \cdot m N.$$

$$\frac{G-Sets}{X} \xrightarrow{} Set} (Aunchor)$$

$$\frac{G-Sets}{X} \xrightarrow{} Set} (Aunchor)$$

$$\frac{G-Sets}{X} \xrightarrow{} Set} (Aunchor)$$

$$\frac{G-Sets}{X} \xrightarrow{} X^{t}$$

$$\frac{G-Sets}{X} \xrightarrow{} X^{t}} \xrightarrow{} G-Set} \xrightarrow$$

Vor small prt i prof:
given
$$\overline{he(H/k)} = H^0(G, H/k)$$

choose het with my $\overline{h} = hK$
aski is hett^G typeG, h=g(n)?
hg(h⁻¹) = e?
Consider the map $g: G \rightarrow HK K$
 $g(g) = hg(h-1) \rightarrow H/K$
 $\overline{hg(h^{-1})}$
 $= \overline{hg(h)}^{-1}$
 $= \overline{hg(h)}^{-1}$

$$y: G \rightarrow K$$

$$\varphi(g) = hg(h^{-1}) \quad he H \sim he(H/k)$$

$$\varphi(g, g_{2}) = hg(g_{2}(h^{-1})) = hg(h^{-1})g(h)g(g_{2}(h^{-1}))$$

$$\varphi(g, g_{2})(\varphi(g_{2})) = \varphi(g, g_{1}(hg_{2}(h^{-1})))$$

$$= \varphi(g, g_{1}(hg_{2}(h^{-1})))$$

$$= \varphi(g, g_{1}(g(g_{2})))$$

K<H 1→K→H→^H/K→*

What it KAH?
Hen we get a LES of ptd cets.

$$1 \rightarrow H^{0}(G,K) \rightarrow H^{0}(G,H) \rightarrow H^{0}(G,H/k) \rightarrow$$

 $H^{1}(G,K) \rightarrow H^{1}(G,H) \rightarrow H^{1}(G,H/k)$
If K is Abelian (i.e. a G-module)
Hen sequre will contree
 $1 \rightarrow H^{0}(G,K) \rightarrow H^{0}(G,H) \rightarrow H^{0}(G,H/k) \rightarrow$
 $H^{1}(G,K) \rightarrow H^{0}(G,H) \rightarrow H^{1}(G,H/k) \rightarrow$
 $H^{1}(G,K) \rightarrow H^{1}(G,H) \rightarrow H^{1}(G,H/k) \rightarrow$
 $H^{2}(G,K)$
 $H^{2}(G,K)$ will be the representing f is from labe.
 $G(en N, G want passible G's s.t.$
 $H^{2} mill devides' them.$
 $H^{2}(G,N)$