Blackhox for now:

Given a finite group G
$$f_{i,q}$$
 G-mode A, HH^{\mu}(G,A) \xrightarrow{N \in G} H^{\mu}(H,A)
and $H^{\mu}(H,A) \xrightarrow{CN} H^{\mu}(G,A)$
if the satisfy $H^{\mu}(G,A) \xrightarrow{N \subseteq G} H^{\mu}(H,A) \xrightarrow{CO} H^{\mu}(G,A)$
if the satisfy $H^{\mu}(G,A) \xrightarrow{N \subseteq G} H^{\mu}(H,A) \xrightarrow{CO} H^{\mu}(G,A)$
From this it follows:
Leve: $H^{\mu}(G,A)$ is 161-tursion.
i.e. $\forall a \in H^{\mu}(G,A)$, $101 \cdot a = 0$
 $M : H^{\mu}(G,A) \xrightarrow{N \subseteq G} H^{\mu}(G,A) \xrightarrow{CO} H^{\mu}(G,A)$
 $H^{\mu}(G,A) \xrightarrow{CO} \xrightarrow{CO} H^{$

Care 2: A is not Abelian.
Lowman: "The Frathmi Argument"
if K=G finite, P e SylpK, then G=KNG(P)
(slagani as K shrinks, normbas. tits Slows grow)
PI: if geG, cansule
$${}^{9}P < {}^{3}K = K \Rightarrow {}^{9}P e SylpK$$

 $\Rightarrow 3 keK sil. {}^{9}P = P \Rightarrow {}^{10}P = P$ i.e.
 $k'g \in N_{G}P \Rightarrow gekN_{G}P$
WTD 3 a comparat
Induct on IKI
if IKI= p = r 1 then doe. (assue not...)
It IKI= p = r 1 then doe. (assue not...)
Choose $P e SylpK$, and consider $N_{G}P$
 $Nate: G/K = K \cdot N_{G}P/K = N_{G}P/K \circ N_{G}P$
 $ndk: K a N_{G}P < K is (IK a N_{G}P I, (e/H))$
So if $N_{G}P \neq G$ then
 $(K a N_{G}P I < IK)$ H
 \Rightarrow by induction, here completed of K in N_{G}P in N_{G}P

$$H^{2}(G, \mathbb{F}^{r})$$
 as G grows take limit.
 $^{3}H^{2}(F, \mathbb{G}^{n})$ [l]
 $H^{1}UH^{1} \subset H^{2}(F)$