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The Morita theorems function by a very useful mechanism that we will see in
various contexts. We can refer to this as the double centralizer phenomena, which
occurs when we have a k-algebra A (for some commutative ring k), a subalgebra
B < A, and we consider the centralizer C4(B). It is a tautology that we have an
inclusion

B c CA(CA(B)).
We will find that in favorable circumstances, we actually have an equality. When
this happens, it will often reflect an interesting relationship between these three
algebras.

In understanding the structure theory of k-algebras, we will see that the matrix
algebra M, (k) will turn out to play a role of a kind of trivial algebra. This will be
first reflected as a consequence of Morita theory (see ??), where we will see that
both k and M,, (k) have equivalent categories of modules.

1. PRELIMINARIES

Definition 1.1. Let R be a k-algebra and M a left R-module. For m € M, we define
the (left) annihilator of m to be the set of r € R such that rm = 0. We note that this
is a left ideal of R.

Definition 1.2. Let R be a k-algebra and M a left R-module. We define the (left)
annihilator of M, denoted anng(M) (or as l.anng(M) if we need to be clear to
distinguish left from right modules) to be the ideal of R consisting of those r € R
such that rm = 0 for all m € M. Note anng(M) = (),,cps anng(m) and that this is a
two-sided ideal of R.

Of course, we define right annihilators analogously.

Definition 1.3. Let R be a ring and M a left R-module. We say that M is faithful if
anng (M) = 0.
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Note that if M is a faithful R-module we obtain an injective map R — Endx(M).
Consequently, one nice use of faithful modules is that they give concrete realiza-
tions of our algebras R. For example, if k was a field, this would exhibit R as an
algebra of matrices over k.

Lemma 1.4. Let R be a ring and M a left R-module. Then the following are equivalent:
(1) M is faithful,
(2) M®! is faithful for some index set I,
(3) there exists a submodule N < M such that N is faithful.

Definition 1.5. Let R be a ring. We define the Jacobson radical J(R) of R to be
the intersection of all maximal left ideals of R. We say that R is semiprimitive if
J(R) = 0.

Lemma 1.6. Let R be a ring. Then J(R) is a two-sided ideal of R and can be described as
J(R) = ﬂ anng(M).

M simple left
R-module

This is a straightforward consequence of the following Lemma:

Lemma 1.7. Let R be a ring and M a left R-module. Then the following are equivalent:
(1) for every m € M\{0}, anng(m) is a maximal left ideal of R,
(2) for some m € M, anng(m) is a maximal left ideal of R,
(3) M = R/] for some maximal left ideal ] < R,
(4) M is a simple left R-module.

Proof. Clearly implies (2). If holds, we find that by simplicity M = Rm
and so the natural map R — M given by r — rm is surjective, which implies
M = R/anng(m), showing (@) with | = anng(m). If (3) holds, then () follows
immediately from the correspondence theorem. Finally, if () holds and m € M is
nonzero then Rm is a nonzero submodule and hence must be M. It follows that we
have an isomorphism R/anng(m) = M and so anng(m) is a maximal left ideal as
claimed. ]

While this definition would seem to leave open the possibility of there being
a different notion of a right Jacobson radical, as we will see, this notion is in fact
“ambidextrous.”

Definition 1.8. Let R be a ring. We say that r € R is right (resp. left) quasiregular
if 1 — r has a right (resp. left) inverse. We say that r is quasiregular if it is both left
and right quasiregular.

We recall that in a ring R, an element r € R having a left multiplicative inverse
need not imply r has a right inverse and conversely. On the other hand, let us recall
a few elementary facts about when one sided inverses and two sided inverses
concide.

Lemma 1.9. Let R be a ring and suppose v € R has both a right an a left multiplicative
inverse, say ar =1 = rb. Thena = b.

Proof. This follows from the elementary computation b = 1b = arb = al = a. ]

Lemma 1.10. Let R be a ring and suppose a, v € R with ar = 1. If a also has a left inverse
then ra = 1.
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Proof. Suppose b € R with ba = 1. Then by Lemma[1.9) we have b = r. But therefore
ra =ba =1. m]

Lemma 1.11 (Isaacs, Thm. 13.4). Let R be a ring. Then every element of J(R) is quasireg-
ular.

Proof. Let r € J(R). We first show that r is left quasiregular. For this, consider the
leftideal R(1 — r) generated by 1 — r. We claim R(1 — r) = R, which would say that
ris left quasiregular. Arguing by contradiction, if R(1 —r) # R then we may choose
I a maximal left ideal containing R(1 —r). Since r € J(R) itis in every maximal right
ideal and so r € I. But 1 — r € M by construction which gives the contradiction
leM.

We now show that r is right quasiregular. As is already left quasiregular, we may
write s(1 — r) = 1. By Lemma it suffices to show that s has a left inverse. For
this, we consider y = 1 — s and note that as s = 1 — y, s having a left inverse is the
same as y being left quasiregular. Consequently it suffices to show that y € J(R).
But for this, we write

1=s(1—-nN=_1-y)(1l-r)=1—-y—r+yr

and so yr — y — r = 0 which gives y = (y — 1)r and r € J(R) tells us that y € J(R),
completing the proof. o

Theorem 1.12 (Isaacs, Thm. 13.4). Let R be a ring. Then J(R) is the largest two-sided
ideal consisting of quasireqular elements.

It follows from this that the “right” and “left” Jacobson radicals coincide.

Proof. In fact, we will show that if I is any left ideal consisting of left quasiregular
elements, then I < J(R). For this, suppose we have such an ideal I. It suffices to
show that I < M for every maximal left ideal M. Choosing such a maximal M, if
I ¢ M then as M is maximal, we have I + M = R and so we may write 1 = x + m
forxel,me M, and som = 1 — x. But as x € [ is left quasiregular, this implies m is
left invertible, contradicting the fact that M is a proper ideal. |

Theorem 1.13 (Nayakama’s Lemma, Rowen’s Ring theory, Prop 2.5.24). Let R be a
ring and M # 0 a finitely generated left R-module. Then J(R)M # M.

Proof. Choose my,...,m, € M a minimal generating set. If [([R)M = M we may
write m, = Y, x;m; for x; € J(R). Subtracting, we find (1 — x,)m, = Z;:ll xXim.
But x,, € J(R) is quasiregular and hence (1 — x,) has some inverse, say a € R. But
therefore we find m,, = Z::ll (ax;)m;, showing that m, is in the span of my, ..., m,_1
and contradicting the minimality of our generating set.

2. PROJECTIVES AND GENERATORS

Definition 2.1. Let Rbearingand P aleft R-module. We say that P is projective if for
every surjective map of R-modules M - N and every homomorphism ¢ : P — N,
there exists ¢’ : P — M giving a commutative diagram
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Lemma 2.2. The following are equivalent for a left R-module P

(1) P is projective,

(2) there exists an R-module P’ such that P @ P’ = R®! for some index set I.
Furthermore, we can choose I to be finite if P is finitely generated.

Proof. If P is projective, choose a surjection R®! — P via a generating set of car-
dinality |I|. By hypothesis, the identity map P — P lifts to a map P — R® and
hence the surjection is split, giving R®' = P @ P’ where P’ is the kernel of the
map R®' — P. Conversely, if P@® P’ = R", M - N is a surjection and ¢ : P — N
is any morphism, consider the morphism ¢ : R” — N given by the composition
R'=P®P — P %, N. It suffices to show that (f) : can be lifted to a map to M. But
as Homg (R®!, M) = Map(I, M) and Homg(R®!,N) = Map(I, N) this just amount
to lifing the set map (corresponding to our free generators). o

Note that as a trivial consequence, R is projective, as is any free module R®!.

Definition 2.3. Let R be a ring and M a left R-module. We say that M is a generator
if for every other left R-module N, there exists a surjective map M®' - N.

Interestingly, generators have a somewhat “dual” characterization as compared
to projectives:

Lemma 2.4 (Anderson and Fuller, 17.6). Let R be a ring and M a left R-module. Then
the following are equivalent

(1) M is a generator,
(2) there exists a left R-module Q such that M" = R ® Q for some n € IN.

Proof. As M is a generator, we can find some I and some surjective map ¢ : M®' —
R. Choose m € M®! with ¢(m) = 1. As every element in M®' lies in a finite sub-
direct sum, we can choose some finite subset Iy c I such that m € M®o < M@,
But then the restriction ¢ : M®* — R has 1 in its image and hence is surjective.
Without loss of generality, we may assume we have a surjection ¢ : M" — R. But
as R is projective, we obtain a direct sum M" = R @ Q where Q = ker(¢). ]

Another “dual” type statement relating generators and projectives is as follows:
Proposition 2.5. Let R be a ring and M an R-module. Let S = Endgr(M). Then we may

consider M as either an R-module or as an S-module.

(1) if M is a finitely generated projective R-module then it is a generator as an S-module,
(2) if M is a generator as an R-module, then it is finitely generated and projective as an
S-module.

Proof. For (I), suppose M is finitely generated and projective and choose M’ so that
M@ M = R". Then as S-modules, we have an identification:
M®" = Homg (R®", M) = Homg(M ® M’, M) = Endg(M) @ Homg(M', M),

and so setting Q = Homg(M’, M), we find M®" = S @ Q, showing that M is a
generator by Lemma

For ([2), we assume M is a generator over R and choose an R-module Q such that
M®" = R® Q. We then find that as S-modules we have:

S — Endg(M)®" = Homg(M®", M) = Homg(R ® Q, M) = M @ Homg(Q, M),



NOTES ON THE MORITA THEOREMS 5

which shows that M is a direct summand of the free module S®" and is therefore
projective. O

Lemma 2.6. Let R be a ring and M a left R-module which is a generator. Then M is
faithful.

Proof. Writing M®" = R@Q, we see that by Lemmall.4that M is faithful if and only
if M®" is faithful. But again by Lemma this follows from the fact that R < M®"
is faithful. |

Definition 2.7. For a ring R, we say that a left R-module P is a progenerator if it
is a finitely generated projective R-module which is a generator in the category of
left R-modules.

3. BI-ENDOMORPHISMS AND BALANCED MODULES

As we head towards double-centralizer type results, let us first make some
observations about centralizers in matrix algebras. For notational convenience, let
us make the following definition:

Definition 3.1. Let R be a ring and M an R-module. Let S = Endg(M). Then M is
an S-module and we define BiEndgr (M) = Ends(M) = Endgng, m)(M).

Note that we always have a canonical map R — BiEndgr(M).

Remark 3.2. Let R be a k-algebra for some commutative ring k and let M be an R-
module. Then Endg (M) is a k-algebra. Repeating this logic, we see Endgnqg ) (Endgr (M))
is contained in Endx(M) and consequently BiEndr (M) = Endgngmy(Endr(M)) =
Endgng, () (Endr(M)). That is, bi-endomorphism rings agree when computed ei-
ther in terms of rings or in terms of k-algebras.

Remark 3.3. In the case that R is a k algebra for some commutative ring k and
M is a faithful R-module, we have R = Endi(M), Endg(M) = Cgng,m)(M) and
Cend, (M) (Cend,(m)(R)) = BiEndg(M).

Definition 3.4. Let R be a k-algebra for some commutative ring k and let M be an
R-module. We say that M is balanced if R — BiEndg (M) is surjective and that M if
faithfully balanced if this is an isomorphism (i.e. if M is faithful and balanced).

Lemma 3.5. Let k be a commutative ring and R a k-algebra. Let M, N be R-modules and
set E = Endy(M @ N). Then
. BiEndg(M) 0 Endi(M) Homg(N,M)
BiEndr (M @ N) = [ - BiEndR(N)] [Horr:nkk(M,N) Eﬁlﬁk(m ] =E.
In particular we have a natural map BiEndr(M @ N) — BiEnd(M) which commutes
with the natural maps R — BiEndgr (M @ N) and R — BiEndgr(M).

Proof. Lete = [} 9] € E. We first show that any T € BiEndz(M @ N) preserves the
summand M in the decomposition M @ N (and so by a similar argument for M,
it preserves the full decomposition). For this, we check that TIM & 0) c M@0,
or equivalently Te(M @ N) < ¢(M @ N). But this follows from the fact that e €

Endr(M @ N) and consequently Te = eT.

We therefore have BiEndg(M @ N) [Endg(M) En d(:(N) ] But as the elements of

BiEndr (M @ N) commute with the subring [Endg(M) En dg (N)] of Endr(M @ N), it

follow that BiIEndg(M @ N) < [BjEn%" D BiEngR(N) ] as claimed. o
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Lemma 3.6. Let k be a commutative ring and R a k-algebra. Let N be an R-module. Then
the natural map R — BiEndg(R @ N) is surjective.

Proof. Let E = Endi(R @ N). Suppose ¢ € BiIEndgr(R @ N) = Cg(Endr(R @ N)).
For n € N, consider the map A, : R — N with A,(r) = rn. We find A = [} | €
Endr(R@®N) and if T = [y | € BiEndg(R @ N) (identifying R = BiEndg(R)) then
asTA = AT wefind rn = 1p(n). Consequently ¢ is the R-linear map given by n — rn
and so T is the image of the scalar multiplication by r map. O

Lemma 3.7. Let R ¢ E be rings and let S = Cg(R). Then with respect to the diagonal
inclusion of R, S, E into M, (E) as Rl,, Sl,,, EI,, respectively, we have Cyy, () (Mu(R)) = S
and Cyy, ) (S) = Mu(R). In particular, setting R = E, we see that Z(M,(R)) = Z(R).

We now come to our first version of a kind of double-centralizer theorem:

Lemma 3.8 (see Anderson and Fuller, Theorem 17.8). Let R be a ring and M an R-
module which is a generator. Then M is faithfully balanced. In particular, if R is a k-algebra
for some commutative ring k and E = Endy (M) then we have an inclusion R — E and the
natural map R — Cg(Cg(R)) is an isomorphism.

Proof. Let R = Cg(Cg(R)) < Endi(M). As M is faithful by Lemma[2.6} the natural
map R — R’isinjective. Write M" = R®Q as in Lemma[2.4] We note that Endy(M") =
M, (E). By Lemma 3.7]we have an identification M,,(Cg(R)) = Cy,(z)(R) and so

Cum, (£) (Cm, (£) (R)) = Cum,(£) M (Ce(R))) = Ce(Ce(R)) = R'.

But Cyy, (£) (Cwm,(p)(R)) = BiEndg(M®") = BiEndg(R @ Q). But by Lemma the
map R — R’ is therefore surjective and hence an isomorphism. O

4. THE MORITA CHARACTERIZATION OF EQUIVALENCES

Let R be a ring and suppose P is a progenerator. Consider the ring S = Endg(P).
We see that we obtain a functor &p : R-mod — S-mod via M — P ®g M.

Theorem 4.1. Let R and S be rings, and F : R-mod — S-mod is a functor. If F is an
equivalence of categories then F(R) is naturally an S — R bimodule P which is an R-
faithful S-progenerator such that S = Endga (P). Further, we have a natural isomorphism
of functors F = §p.

Proof. Suppose F is an equivalence, and let P = F(R). As F is an equivalence, it
follows that P is projective and a generator since R is. We claim that P is finitely
generated — for this, we note that for any index set I and surjective map ®;e;M; — R
in R-mod, the element 1 € R is the image of some finite sum, and so we find that
there is a finitely indexed sub-set Iy < I such that ®;c;,M; — R is still surjective.
As this is a categorical property, it follows that P has the same property in the
category S-mod. In particular, if we choose any generating set giving a surjection
S® — P, we obtain a surjection from a finite sub-direct sum, showing that P is
finitely generated. Hence P is an 5-progenerator.

Consider the endomorphism ring Ends(P) = Ends.mod(F(R)). As we have an
equivalence of categories, this is isomorphic to the endomorphism ring Endg(R) =
Endg-mod (R) = R°P (endomorphisms are given by right multiplication by elements
of R). Consequently, P is an S — R bimodule. Moreover, as any R-module map
f + R — R, necessarly induced by right multiplication by some r € R passes to,
upon application of F a map P — P induced by this same multiplication, this time




NOTES ON THE MORITA THEOREMS 7

considering P as an R-module, we see that we can identify F(f) with P ®g f (both
being different descriptions of multiplication by r). More generally, as general maps
f : R® — RJ are combinations of these maps, we also see F(f) = P®g f in this case
as well.

As F is an equivalence, it preserves direct sums and exact sequences. In partic-
ular, if M is any R-module, we can choose a presentation

Rel LR M 0,

and comparing the results of applying F, versus tensoring with P, we find we have
a commutative diagram with exact rows (using that F(f) = P ®x f):

F
per LD py F(M) 0
[—
por 220 py P @r M —0.
Therefore we obtain an isomorphism F(M) = P ®g M. In Exercise[t.2lwe check that
these can fit together to produce a natural isomorphism a : F — P ®g _. O

Exercise 4.2. Show that choosing as in the proof of Theorem [{.1|a free resolution of each
R-module M, we may obtain a natural isomorphism o : F — P ®g _.

We also show that the converse of Theorem . Tjholds. Before doing so, we record
some preliminary lemmas:

Lemma 4.3. Let R, S be rings, let P be a right R-module, let M be an S — R bimod-
ule, and let N be a left S-module. Consider the natural map P ®g Homg(M,N) —
Homs(Homger (P,M),N) given by p ® f — (¢ — f(¢(p))). If P is projective over R,
then this is an isomorphism.

Proof. Note that if P = R¥ is free, then this is just the identification

R® @k Homs(M,N) = [ [ Homs(M, N) = Homg(M®, N)
1

= Homg(Homge (R®!, M), N),

verifying the claim in the case that P is free. In general, choose a right R-module P’
with R®! = P@ P’ as right R-modules. By the naturality of this map in P, and right
exactness of the tensor, we find we have a commutative diagram:

R® ®r Homg (M, N)

P ®r Homg(M,N) ——0

|

Homs(Hompge (R®!, M), N) — Homg(Homger (P, M), N) —— 0

which shows our map is surjective. Arguing similarly for P/, we then find we have
a commutative diagram

0 — P’ ® Homg(M, N) — R® @ Homs (M, N) P ®r Homs(M,N) —=0

| |

Homg(Homger (P’, M), N) = Homs(Homge (R®, M), N) = Homs(Homger (P, M), N) = 0
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and a diagram chase now shows that the map
p ®R HOI’I’IS (M, N) — HOl’ns (HOl’nROP (P, M), N)
is injective and hence an isomorphism. ]

Lemma 4.4. Let R, S be rings, let P be a left S-module, let N be an S — R bimodule, and let
M be a left R-module. Consider the natural map Homs (P, N) @ M — Homg (P, N®r M)
given by f @ n — (p — f(p) ®n). If P is projective over S, then this is an isomorphism.

Proof. This follows the same pattern as the proof of Lemma o

Theorem 4.5 (Morita — see Anderson and Fuller 22.2). Let R be a ring and P a
progenerator in R-mod”. Let S = Endgw (P). Then P is an S — R bimodule and the
morphism §p : R-mod — S-mod given by Fp(M) = P ®r M is an equivalence of
categories with inverse equivalence given by ®p : S-mod — R-mod via Gp(N) =
Homs (P, NY]
Proof. We check that these are inverse equivalences. For this we have (using
Lemma together with the fact that R? = BiEndgs P = Endg(P) (i.e. Ends(P)
can be identified with R acting by right multiplication):
@pgp(M) = Homs(P,P®R M) = Homs(P,P) ®R M= R@RM =M.
For the other direction we have (using Lemma [4.3):
Fr®p(N) = P®r Homg(P, N) = Homgs(Endge (P), N) = Homg(S,N) = N.

O
Corollary 4.6. Let R be a ring. Then for any n > 0, we have an equivalence of categories
R-mod = M-mod (R).
Proof. This follows from Theorem 4.5 via the right R-progenerator P = R". |
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IThe R-module structure on Homg (P,N) is defined as follows. For f € Homg(P,N),setaf(p) = f(pa).
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