Outline for Graduate Algebra UPenn, Fall 2024

Danny Krashen

August 12, 2024

Contents

Ι	Fir	st semester: noncommutative algebra	3
1	Gro	ups	4
	1.1	<u>-</u>	4
		1.1.1 Definitions and examples	4
		1.1.2 Subgroups and cosets	4
		1.1.3 Homomorphisms	4
	1.2		4
		1.2.1 Group actions	4
		1.2.2 Permutation groups	į
	1.3	Week 3: Sylow theorems and p-groups	į
	1.4	Week 4: Semidirect products and extensions	Į
	1.5	Week 5: Group cohomology and Schur-Zassenhaus	Į
	1.6	Week 6: Solvable and nilpotent groups	į
2	X-g	roups	(
	2.1	Week 7: Composition series	(
	2.2	Week 8: Chain conditions and reducibility	(
3	Nor	ncommutative Rings	
	3.1	Week 9: Basic notions	7
	3.2	Week 10: Wedderburn-Artin theory	7
	3.3	Week 11: Categories of modules	7
		3.3.1 Tensor products, injectives, projectives, flats	7
	3.4		7
	3.5	Week 13: Homological algebra	7
		3.5.1 Ext and extensions, Tor	7
		3.5.2 Limits	7
II	Se	econd semester: commutative algebra	
		G	
4		d theory	,
	4.1	Week 1: Ring preliminaries	9

		4.1.1 first lecture	9
		4.1.2 second lecture	9
	4.2	Week 2: Field extensions and Galois theory	9
		4.2.1 Field extensions	9
		4.2.2 Galois theory	9
	4.3	Week 3: Further topics in Galois theory	10
		4.3.1 Descent and Hilbert 90	10
		4.3.2 Cyclic extensions	10
	4.4	Week 4: Separable and inseparable extensions	10
	4.5	Week 5: Applications	10
		4.5.1 Cyclotomic extensions and geometric constructions	10
		4.5.2 Finite fields	10
	4.6	Week 6: Norms, traces, discriminants, resultants	10
	4.7	Week 7: Transcendental extensions	10
5	Con	nmutative (mostly Noetherian) rings	11
5	Con 5.1	nmutative (mostly Noetherian) rings Week 8: Primary decomposition, height and dimension	11 11
5			
5	5.1	Week 8: Primary decomposition, height and dimension	11
5	5.1 5.2 5.3	Week 8: Primary decomposition, height and dimension Week 9: Some structural results on rings and modules Week 10: Dedekind domains	11 11
	5.1 5.2 5.3	Week 8: Primary decomposition, height and dimension Week 9: Some structural results on rings and modules Week 10: Dedekind domains	11 11 12
	5.1 5.2 5.3 Line	Week 8: Primary decomposition, height and dimension Week 9: Some structural results on rings and modules Week 10: Dedekind domains	11 11 12 13
	5.1 5.2 5.3 Line	Week 8: Primary decomposition, height and dimension Week 9: Some structural results on rings and modules Week 10: Dedekind domains	11 11 12 13
	5.1 5.2 5.3 Line	Week 8: Primary decomposition, height and dimension Week 9: Some structural results on rings and modules Week 10: Dedekind domains	11 11 12 13 13
	5.1 5.2 5.3 Line 6.1	Week 8: Primary decomposition, height and dimension Week 9: Some structural results on rings and modules Week 10: Dedekind domains	11 11 12 13 13 13
6	5.1 5.2 5.3 Line 6.1 6.2 Alge	Week 8: Primary decomposition, height and dimension	11 11 12 13 13 13 13

Part I

First semester: noncommutative algebra

Groups

1.1 Week 1: Group fundamentals

1.1.1 Definitions and examples

[Isa09, Ch. 1]

- 1. def of functions, injectivity, surjectivity, left vs right notation
- 2. injective if right invertible, surjective if left invertible, if bijective then inverses are equal
- 3. permutation groups
- 4. binary operations, magmas, monoids, loops, groups

1.1.2 Subgroups and cosets

[Isa09, Ch. 2]

1.1.3 Homomorphisms

[Isa09, Ch. 3]

1.2 Week 2: Actions and permutations

1.2.1 Group actions

[Isa09, Ch. 4]

1.2.2 Permutation groups

[Isa09, Ch. 6]

1.3 Week 3: Sylow theorems and p-groups

[Isa09, Ch. 5]

1.4 Week 4: Semidirect products and extensions

[Isa09, Ch. 7]

1.5 Week 5: Group cohomology and Schur-Zassenhaus

[Wei94, Section 6.6], [Bro94, Section IV.3]

1.6 Week 6: Solvable and nilpotent groups

[Isa09, Ch. 8]

X-groups

2.1 Week 7: Composition series

[Isa09, Ch. 10]

- 1. composition series for groups (with operators), modules
- 2. jordan-holder, length
- 3. solvable, supersolvable, nilpotent
- 4. krull-schmidt

2.2 Week 8: Chain conditions and reducibility

[Isa09, Ch. 11]

- 1. ascending and descending chain conditions for groups (with operators) and modules
- 2. complete reducibility/semisimplicity
- 3. zorn's lemma

Noncommutative Rings

3.1 Week 9: Basic notions

[Isa09, Ch. 12]

3.2 Week 10: Wedderburn-Artin theory

[Isa09, Ch. 13 and a bit of Ch. 14]

- 3.3 Week 11: Categories of modules
- 3.3.1 Tensor products, injectives, projectives, flats
- 3.4 Week 12: Morita theory

[AF92, Ch. 6]

- 3.5 Week 13: Homological algebra
- 3.5.1 Ext and extensions, Tor
- **3.5.2** Limits

Part II

Second semester: commutative algebra

Field theory

4.1 Week 1: Ring preliminaries

[Isa09, Ch. 16]

4.1.1 first lecture

- 1. factorization and UFDs
- 2. modules over PIDs

4.1.2 second lecture

- 1. localization in general
- 2. prime ideals in localizations
- 3. completions, hensel's lemma
- 4. primes as transitional to field theory, nakayama reminder

4.2 Week 2: Field extensions and Galois theory

4.2.1 Field extensions

[Isa09, Ch. 17]

4.2.2 Galois theory

[Isa09, Ch. 18] [Jac85, Ch. 4]

1. primitive element [Jac85, Thm 4.28]

- 2. dedekind's lemma [Jac85, § 4.14]
- 3. normal basis [Jac85, § 4.14]

4.3 Week 3: Further topics in Galois theory

[Jac89, Ch. 8] and other notes.

4.3.1 Descent and Hilbert 90

- 1. descent via morita theory
- 2. crossed homomorphisms, H^1 and twisted forms
- 3. hilbert 90

4.3.2 Cyclic extensions

- 1. Kummer theory
- 2. Artin-Schrier theory

4.4 Week 4: Separable and inseparable extensions

[Isa09, Ch. 19]

4.5 Week 5: Applications

4.5.1 Cyclotomic extensions and geometric constructions

[Isa09, Ch. 20]

4.5.2 Finite fields

[Isa09, Ch. 21]

4.6 Week 6: Norms, traces, discriminants, resultants

[Isa09, Ch. 23]

4.7 Week 7: Transcendental extensions

[Isa09, Ch. 24]

Commutative (mostly Noetherian) rings

5.1 Week 8: Primary decomposition, height and dimension

[Isa09, Ch. 27], [Row06, Ch. 6]

- 1. Hilbert basis
- 2. lasker-noether
- 3. krull intersection
- 4. krull's principal ideal theorem
- 5. krull dimension

5.2 Week 9: Some structural results on rings and modules

[Isa09, Ch. 24], [Row06, Ch. 6]

- 1. integral extensions
- 2. noether normalization
- 3. mention Cohen structure theorem
- 4. flat = projective = locally free for finitely presented modules

5.3 Week 10: Dedekind domains

[Isa09, Ch. 29]

Linear algebra

- 6.1 Week 11: Multilinear algebra
- 6.1.1 Duals, exterior and symmetric forms
- 6.1.2 Bilinear and quadratic forms
- 6.2 Week 12: Canonical forms

Algebraic geometry

7.1 Week 13: Rings as coordinate rings

Appendix A other resources

Bibliography

- [AF92] Frank W. Anderson and Kent R. Fuller. Rings and categories of modules, volume 13 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1992.
- [Bro94] Kenneth S. Brown. <u>Cohomology of groups</u>, volume 87 of <u>Graduate Texts in Mathematics</u>. Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original.
- [Eis95] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
- [Isa09] I. Martin Isaacs. Algebra: a graduate course, volume 100 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2009. Reprint of the 1994 original.
- [Jac85] Nathan Jacobson. <u>Basic algebra. I.</u> W. H. Freeman and Company, New York, second edition, 1985.
- [Jac89] Nathan Jacobson. <u>Basic algebra. II.</u> W. H. Freeman and Company, New York, second edition, 1989.
- [Rot09] Joseph J. Rotman. An introduction to homological algebra. Universitext. Springer, New York, second edition, 2009.
- [Row06] Louis Halle Rowen. <u>Graduate algebra: commutative view</u>, volume 73 of <u>Graduate Studies in Mathematics</u>. American Mathematical Society, <u>Providence</u>, RI, 2006.
- [Wei94] Charles A. Weibel. <u>An introduction to homological algebra</u>, volume 38 of <u>Cambridge Studies in Advanced Mathematics</u>. <u>Cambridge University Press</u>, <u>Cambridge</u>, 1994.