Math 6030, Graduate Algebra, Spring 2025, Homework 1

Instructor: Danny Krashen

Discussing the problems with other people is encouraged, but you must write up your own work independently!

- 1. Suppose that R is a UFD and let $S \subset R \setminus \{0\}$ be a multiplicative set. Is it true that every element $a/b \in R[S^{-1}]$ (so $b \in S$) can be written in the form α/β with $\beta \in S$ and α, β having no common irreducible factors? Prove that this always happens or produce a counterexample.
- 2. Suppose R is a PID and M is a finitely generated torsion-free R module (recall that this means rm = 0 if and only if r = 0 or m = 0). For $m, n \in M$ we write n|m to mean rn = m for some $r \in R$. Show that for any $m \in M$, there exists $n \in M$ such that n|m and with p|m implying n|p.

hint: you may want to use that M is Noetherian

3. For a set X and rings R and S, we say (for the purposes of this problem) that an X-map from R to S consists of a pair (ϕ, f) where $\phi : R \to S$ is a ring homomorphism and $f : X \to S$ is a set map.

Suppose that \widetilde{R} is a ring together with an X-map (ϕ, f) from R to \widetilde{R} . We say that (ϕ, f) is universal if for any other X-map (ψ, g) from R to S there exists a unique ring homorphism $\widetilde{R} \to S$ such that the diagrams

$$R \bigvee_{\psi}^{\phi} \bigvee_{S}^{\widetilde{R}} \qquad X \bigvee_{g}^{f} \bigvee_{S}^{\widetilde{R}}$$

commute. In this case, we will also say (by abuse of terminology) that \tilde{R} is a universal X-ring over R.

- (a) Show that if \widetilde{R} and \widetilde{R}' are both universal X-rings then $\widetilde{R} \cong \widetilde{R}'$.
- (b) Show that the polynomial ring R[X] is a universal X-ring.
- 4. (corrected!) Let R be a ring. Recall that a subset $S \subset R$ is a multiplicative set if and only if $SS \subset S$ and $1 \in S$ (note that in the book they also require $0 \notin S$, but we will not require this here).

Let N be an R-module. We say that N is S-localizing if for every $s \in S$ there exists an R-module homomorphism $\iota_s : N \to N$ such that $\iota_s(sm) = m$. We say that a homomorphism $\phi : M \to N$ is S-localizing if N is S-local.

We say that a homomorphism $\phi: M \to \widetilde{M}$ is universally S-localizing if it is S-localizing and if for every other S-localizing map $\psi: M \to N$ there exists a unique R-module map $\widetilde{M} \to N$ such that the diagram

$$M \underbrace{\swarrow}_{\psi}^{\phi} \bigvee_{N}^{\widetilde{M}}$$

commutes. In this case, we also say that \widetilde{M} is a universal S-localizing module for M.

- (a) Show that if \widetilde{M} and \widetilde{M}' are both universal S-localizing modules for M then $\widetilde{M} \cong \widetilde{M}'$.
- (b) Show that if \widetilde{M} is a localizing module then \widetilde{M} is naturally an $R[S^{-1}]$ module.
- (c) (optional) Show that $R[S^{-1}] \otimes_R M$ is universally S-localizing for M.

5. (this one might be wrong – counterexamples for extra credit!) Let R be a ring. Recall that a subset $S \subset R$ is a multiplicative set if and only if $SS \subset S$ and $1 \in S$ (note that in the book they also require $0 \notin S$, but we will not require this here).

Let M, N be a R-modules. We say that a homomorphism $\phi : M \to N$ is S-localizing if for each $s \in S$ and $m \in M$ there exists $n \in N$ such that $sn = \phi(m)$. In other words, the image of every element of Mis divisible by every element of S.

We say that a homomorphism $\phi: M \to \widetilde{M}$ is universally S-localizing if it is S-localizing and if for every other S-localizing map $\psi: M \to N$ there exists a unique R-module map $\widetilde{M} \to N$ such that the diagram

$$M \underbrace{\overset{\phi}{\underset{\psi}{\overset{}}{\overset{}}}}_{\psi} \underbrace{\overset{\widetilde{M}}{\underset{N}{\overset{}}}}_{N}$$

commutes. In this case, we also say that \widetilde{M} is a universal S-localizing module for M.

- (a) Show that if \widetilde{M} and \widetilde{M}' are both universal S-localizing modules for M then $\widetilde{M} \cong \widetilde{M}'$.
- (b) Show that if \widetilde{M} is a localizing module then \widetilde{M} is naturally an $R[S^{-1}]$ module.
- (c) (optional) Show that $R[S^{-1}] \otimes_R M$ is universally S-localizing for M.