Math 6030, Graduate Algebra, Spring 2025, Homework 10

Instructor: Danny Krashen

Discussing the problems with other people is encouraged, but you must write up your own work independently!

- 1. Let R be a commutative ring and I an ideal in R. Define for $r \in R$, $v_I(r) = \sup\{n \mid r \in I^n\} \in \mathbb{R} \cup \{\infty\}$. Fix $e \in \mathbb{R}$ with e > 1. For $x, y \in R$, let $d(x, y) = e^{-v_I(y-x)}$ (with the convention $e^{-\infty} = 0$).
 - (a) Show that if R is a Noetherian domain, then d defines a metric on R.
 - (b) Give an example of a domain R such that d does not define a metric.
 - (c) Either prove or give a counterexample for the following statement:

If $I \triangleleft R$ is an ideal in a Dedekind domain then $v_I(ab) = v_I(a) + v_I(b)$.

2. Suppose that R is a Dedekind domain with fraction field F. If J is a fractional ideal and $n \in \mathbb{N}$, define $J^{-n} \equiv (J^{-1})^n$ where $J^{-1} = \{a \in F \mid aJ \subseteq R\}$.

Either prove or give a counterexample for the following statement:

For every nonzero fractional ideal $I \subset F$, there is a unique list (possibly empty) of prime ideals P_1, \ldots, P_r and nonzero integers $n_1, \ldots, n_r \in \mathbb{Z}$ with $I = P_1^{n_1} \cdots P_r^{n_r}$ (the empty product is considered to be R).

- 3. Let R be a commutative ring and $I, J \triangleleft R$ ideals. For the following two statements, either find a proof or show a counterexample:
 - (a) If the map $R \to R/I \times R/J$ sending r to (r + I, r + J) is surjective then for any positive integers $n, m, R \to R/I^n \times R/J^m$ is also surjective.
 - (b) If the map $R \to R/I \times R/J$ sending r to (r + I, r + J) is an isomorphism then for any positive integers n, m, the map $R \to R/I^n \times R/J^m$ is also an isomorphism.
 - (c) Suppose I, J are proper, nonzero ideals. If the map $R \to R/I \times R/J$ sending r to (r + I, r + J) is an isomorphism then for any n, m > 1, the map $R \to R/I^n \times R/J^m$ cannot be an isomorphism.
- 4. Suppose R is a commutative domain with fraction field F and $|\cdot|: R \to \mathbb{R}$ is a norm. In other words, we have:
 - 1. $a \ge 0$ and |a| = 0 if and only if a = 0,
 - 2. $|a+b| \le |a|+|b|$,
 - 3. $|ab| \le |a||b|$.
 - (a) Show that if we have the additional axiom |ab| = |a||b| then defining |a/b| = |a|/|b| for $b \neq 0$ gives a well defined norm on the fraction field F.
 - (b) If we don't have this additional axiom, what goes wrong? Is the above definition on F always a well defined function? Is it always a norm?