Math 6030, Graduate Algebra, Spring 2025 Review Sheet

Instructor: Danny Krashen

Throughout this problem sheet, all rings are assumed to be unital and nonzero.

- 1. Are the following ideals primary? Why or why not.
 - (a) $(xy) \subseteq \mathbb{C}[x,y]$
 - (b) $(x,y) \subseteq \mathbb{C}[x,y]$
 - (c) $(x^2, y) \subseteq \mathbb{C}[x, y]$
 - (d) $(x^2, xy) \subseteq \mathbb{C}[x, y]$
 - (e) $(x^2, xy, y) \subseteq \mathbb{C}[x, y]$
- 2. Prove or find a counterexample to the following statement: Every commutative ring has a minimal prime ideal.
- 3. Prove or find a counterexample to the following statement: Every commutative ring has a minimal ideal.
- 4. Is $\mathbb{C}[x, y]/(y^2 x^3)$ integrally closed? Why or why not?
- 5. Is $\mathbb{C}[x,y]/(y^2-x^3)$ a Dedekind domain? Why or why not?
- 6. Let $I \subseteq R$ be an ideal in a commutative domain R. Show that if I is principal (that is, I = aR for some $a \in R$), then I is invertible when thought of as a fractional ideal.
- 7. Given an example of an ideal I in a commutative domain R, which is not invertible when considered as a fractional ideal.
- 8. Let R be a commutative ring and $I, J \subseteq R$ ideals. Show that if I + J = R then $R/(IJ) \cong R/I \times R/J$.
- 9. Consider the ring $R = \mathbb{C}[x, y]$ and let I = (x, y). Recall that we may define a function $|\cdot| : R \to \mathbb{R}$ by setting $v_I(f) = \sup\{n \mid f \in I^n\}$ and $|f| = e^{-v_I(f)}$ (using the convention that $e^{-\infty} = 0$).
 - (a) Check that $|ab| \leq |a||b|$ and |a| = 0 if and only if a = 0.
 - (b) Check that $|a + b| \le |a| + |b|$.
 - (c) Let F be the fraction field of R and define |f/g| = |f|/|g|. Is this well defined? Does it satisfy the above properties?
- 10. Prove or give a counterexample: every PID is integrally closed.
- 11. Prove or give a counterexample: every PID is Noetherian.

12. Say that a commutative ring R is an n-ary ideal ring if every ideal I in R can be generated by at most n elements.

Suppose R is a commutative ring such that for every proper ideal I, we have that R/I is an n-ary ideal ring. Is it true that R must be an n + 1-ary ideal ring? Prove this is true or give a counterexample.

- 13. Let R be a commutative domain with fraction field F and let E/F be an algebraic extension. If $\alpha \in E$, is it true that there exists $r \in R \setminus \{0\}$ with $r\alpha$ integral over R?
- 14. Show that if R is a Dedekind domain, and Q is primary, then $Q = P^e$ for some prime ideal P and positive integer e.
- 15. If R is a Dedekind domain, and $f \in R \setminus \{0\}$ then is it true that $R[f^{-1}]$ is also a Dedekind domain? Prove or provide a counterexample.
- 16. If R is a commutative domain and I is a proper ideal, is it true that I^{-1} must properly contain R? Show this is true or provide a counterexample.

CONCEPTS NOT YET COVERED

- 1. More primary decomposition in general
- 2. Krull intersection
- 3. Nakayama
- 4. Transcendence bases / Noether normalization / Krull dimension / transcendence degree