Math 6030, Graduate Algebra, Spring 2025, Homework 7

Instructor: Danny Krashen

Discussing the problems with other people is encouraged, but you must write up your own work independently!

1. (bonus!)

(a) Show that if $I = \bigcap P_i$ with each P_i a distinct minimal prime over I, then this is the unique primary decomposition (with distinct associated primes).

Hint: if $I = \bigcap Q_i$ with P_i associated to Q_i then for $x \in P_i \setminus Q_i$ consider $x \prod_{i \neq i} P_j$.

- (b) Show that if I is a radical ideal (i.e. if $I = \sqrt{I}$) then its primary decomposition must be unique.
- 2. Let I, J be ideals in a commutative ring R such that I + J = R. Prove that:
 - (a) $IJ = I \cap J$.
 - (b) The natural map $\psi: R/IJ \to R/I \times R/J$, given by $\psi(x+IJ) = (x+I, x+J)$, is an isomorphism.
- Let φ_i: R → R_i be surjective maps for i = 1, 2, ..., n. Suppose that for every pair of indices i, j, the induced map
 R → R_i × R_j

is surjective. Prove that the map

$$\phi: R \to \prod_i R_i$$

is also surjective.

4. Prove that $R/IJ \cong R/I + R/J$ (via the natural projection maps) if and only if

$$R/\sqrt{IJ} \cong R/\sqrt{I} \times R/\sqrt{J}.$$

5. Suppose $f_1, \ldots, f_r \mathbb{C}[x_1, \ldots, x_n]$ and let $I = \langle f_1, \ldots, f_r \rangle$ be the ideal generated by these. Suppose that $a = (a_1, \ldots, a_n) \in \mathbb{C}^n$ and that $f_i(a) = 0$ for all i. Show that if $g \in I^m$, then we have

$$(\partial/\partial x_{i_1} \cdots \partial/\partial x_{i_\ell}g)(a) = 0 \text{ for } \ell < m.$$

- 6. (optional) For each of the following ideals, determine whether it is primary. Justify your answer.
 - (a) $\langle x^2, xy \rangle$ in $\mathbb{C}[x, y]$.
 - (b) $\langle x^2y, xy^2 \rangle$ in $\mathbb{C}[x, y]$.
 - (c) $\langle x^2 + y^2 \rangle$ in $\mathbb{C}[x, y]$.
 - (d) $\langle x^2 2x \rangle$ in $\mathbb{Z}[x]$.
 - (e) $\langle x(x-1) \rangle$ in $\mathbb{Z}[x]$.