Pophan question:
To And all BS, find all possible (E,G) sender acting
on EeopA.
Of cause, we are starty of an (E,G) number actin on EeopA.
Question: given are senderation, how to describe others?
Question: given are senderation, how to describe others?
Given shuld in action on
$$Eeo_{F}A = A_{E}$$

with as " $\sigma(a)$ " consider questionare : $\sigma \cdot a$.
 $\sigma \cdot a = \alpha(\sigma)\sigma \alpha$
 $\sigma \cdot (\sigma^{-1}a) = \alpha(\sigma)\alpha$
 $i = \gamma \cdot (\sigma^{-1}(A)) = \sigma \cdot (\sigma^{-1}(A) \sigma^{-1}(G))$
 $\lambda \in E$
 $= \gamma \cdot (\sigma^{-1}a)$
 $\sigma \cdot \sigma^{-1}$ is a $E - Inv art of A.$
associable
 $\phi \cdot arbin quet a map $\alpha : G \longrightarrow Aut_{E}(A_{E})$$

Sidebasi given a sp actor GCB

$$G \rightarrow A \downarrow B \Rightarrow G \rightarrow A \downarrow t(A \downarrow t B)$$

so that $\sigma(f(b)) = \sigma(P_1(\sigma(b)))$
this serves
 $\sigma(f(\sigma'(b))) = \sigma(f) \sigma(\sigma'(b))$
 $(\sigma f \circ \sigma'')(b) = \sigma(f) \sigma(\sigma'(b))$
 $(\sigma f \circ \sigma'')(b) = \sigma(f)(b)$
 $Gres df' = \sigma(f) = \sigma \circ f \circ \sigma''$

exerciser
$$M_n(E) = Aut_E(E^n) \quad G(CE^n studied way)$$

then above actua on $M_n(E)$
just acts on cuties as E^{n^2}

Study also
Grew a (E,G) Contradur • on AE
get a map
$$\alpha: G \rightarrow Aut_E(AE)$$

 $qut a map \alpha: G \rightarrow \sigma^{-1}$
 $\alpha(\sigma)(\alpha) = \sigma \cdot \sigma^{-1}$
 $\alpha(\sigma)(\alpha) = \sigma \cdot (\sigma^{-1}\alpha)$ and AE
 $\sigma \cdot \alpha = \alpha(\sigma) \sigma(\alpha)$
 $\sigma \cdot (\tau \cdot \alpha) = (\sigma \tau) \cdot \alpha$ = • is an actur.
 $\sigma \cdot (\tau \cdot \alpha) = (\sigma \tau) \cdot \alpha$ = • is an actur.
 $\sigma \cdot (\sigma \cdot \alpha) = (\sigma \tau) \cdot \alpha$ = • is an actur.
 $\sigma \cdot (\sigma \cdot \alpha) = (\sigma \tau) \cdot \alpha$ = • is an actur.
 $\sigma \cdot (\sigma \cdot \alpha) = (\sigma \tau) \cdot \alpha$ = • is an actur.
 $\sigma \cdot (\sigma \cdot \alpha) = (\sigma \tau) \cdot \alpha$ = • is an actur.
 $\sigma \cdot (\sigma \cdot \alpha) = (\sigma \tau) \cdot \alpha$ = $\alpha(\tau) \sigma (\alpha(\tau)) \sigma \tau(\alpha)$
 $\alpha(\tau) \tau (\alpha(\tau) \tau(\alpha)) = \alpha(\tau) \sigma (\alpha(\tau)) \sigma \tau(\alpha)$
 $q = (\sigma \tau) \cdot b \quad \alpha(\sigma \tau) \cdot (\sigma \cdot \alpha) = \alpha(\tau) \cdot \sigma (\alpha(\tau)) (b) = \alpha(\tau) \cdot \sigma (\alpha(\tau)) (b)$
 $i.e. \quad \alpha \text{ is } \alpha \text{ crossed homomorphism}$
Energy: if $\alpha: G \rightarrow Aut_E(AE)$ is a crossed homomorphism
Energy: if $\alpha: G \rightarrow Aut_E(AE)$ is a crossed homomorphism
 $f(\alpha) \quad \sigma \cdot \alpha \equiv \alpha(\sigma) \cdot \sigma(\alpha)$ defects $\alpha \in (E, \sigma) \text{ surfur colored}$.
Problem if $\alpha, \beta: G \rightarrow Aut_E(A_E)$ are crossed homomorphism
when an end the remain acture $\alpha \in \mathbb{R}$.

Quit example: Aut
$$_{\mathbf{E}} M_2(\mathbf{d}) = \{T \rightarrow STS' \text{ some Set } M_2(\mathbf{c}^{d})\}$$

 $GL_2(\mathbf{d})$
 $Kret = C^* - \{I \cup \lambda\}\}$
 $Aut_{\mathbf{d}} M_2(\mathbf{d}) = GL_2(\mathbf{d})$
 $H'(C_2, PGL_2(\mathbf{d}))$
 $Kret = TePGL_2(\mathbf{d})$
 $Kret = TePGL_2(\mathbf{d}) \rightarrow TePGL_2(\mathbf{d}) \rightarrow TePGL_2(\mathbf{d})$
 $Kret = TePGL_2(\mathbf{d}) \rightarrow T$

 $H'(\Gamma, G) \longrightarrow G \cdot G \cdot d_{r} d_{r} S.$ $G \rightarrow Z \longrightarrow G \rightarrow G \rightarrow 0$ $H'(\Gamma, G) \longrightarrow H'(\Gamma, G) \rightarrow H^{2}(\Gamma, Z)$ $L_{F_{2}} \longrightarrow F_{F}$

F F