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Math 6030, Graduate Algebra, Spring 2025, Homework 6
(and study guide)

Instructor: Danny Krashen

Discussing the problems with other people is encouraged,
but you must write up your own work independently!

1. Let R be a commutative ring. We say that an element e € R is an idempotent if e = e. We say that e
is a primitive idempotent if for every other idempotent f, we have either ef = e or ef = 0.

(a) Show that an idempotent e is primitive if and only if it cannot be written as e = ¢’ + ¢” where ¢’
and e” are nonzero idempotents with e’e” = 0.

(b) Let F be a field and let E = F x --- X F be a product of n copies of F. Show that Autp(E) =S,
hint: note that automorphisms send primitive idempotents to primitive idempotents.

2. Recall that for a finite group G, a G-Galois algebra over F' is a separable F-algebra E with G action
such that |G| = dimg E and E€ = F.

Suppose that £ = E; x --- X E,. is a G-Galois algebra over F with each F; a separable extension of F
(a) Show that for each 4, j there is some o € G such that o(E;) = Ej. "o- 21\ qf\- 3‘ -g M"‘a“' {\
. G G
hint: note that if G acts on rings K, L then (K x L)% =K T X L . (e i} S @ACT

(b) Show that if H = {g € G | g(E1) C E1}, then |H| = | |/‘F§nd£1/F is a Galois extension with

group H. 3 ,E

note: we stated this in class, but here I'm asking you to prove it! (,(-T

3. Let E//F be a finite field extension (not necessarily Galois) and let G C Gal(E/F') is a subgroup of the
group of automorphisms of E which fix F' elementwise.

Show that |G| | [E : F].

4. Let F be a field of characteristic p. If E/F is a purely inseparable extension (recall, this means that for
every a € E, we have a?” € F for some n), is E/F necessarily normal? Either prove it must be normal,
or give a counterexample.

5. Suppose E/F and K/F are Galois extensions with Galois group C7. Suppose L/F is a field extension
of degree 5.

(a) Show that L @7 F and L ®p K are fields,

(b) Show that if L ®p F =~ L ®F K as field extensions of L, then E = K as field extensions of F.

Hint: you can use the fact that G-Galois algebras which are split by a T'-Galois extension ﬁ/F
correspond to elements of HY(I',G) = Hom(T',G)/ ~ where ~ corresponds to conjugation in G.
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6. (optional/review) Suppose E/F is a purely inseparable extension and let f € E[x] be a monic irreducible
polynomial.

(a) Show that g = fP" is a monic irreducible polynomial in F[z] for some n.
(b) Let L/FE be a splitting field of f. Show that g factors as a product of linear polynomials in L[z].

(c) What is the relationship between the roots of f and the roots of g = f?" in L?

7. (optional/review) Consider a = /2 + /5 € C.

(a) What is the minimal polynomial of a over Q7

(b) What is the Galois group of the splitting field of this minimal polynomial?

8. (optional/review) Suppose E/F is a Galois extension with group G. Let L, K be subextensions with
[L: F] and [K : F| relatively prime and suppose that E is the smallest subfield containing both L and
K. Suppose that L/F is Galois. Show that G = Gal(E/L) x Gal(E/K).

9. (optional/review) Suppose E/F is a separable and normal (but not necessarily finite) algebraic extension.

Show that if FF C L C E with L/F Galois, then ~ ye E 3/ E— P\
—
(a) o(L) C L for o € Gal(E/F), 5 &UG\ =L\ = 2 S ?V/M@(
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(b) the induced map Gal(E/F) — Gal(L/F) is surjective. | - (4
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(¢) we have a bijection
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10. (optional/review) Suppose E/F is a Galois extension with group G. Let K be an intermediate subfield
with [K : F] = n. Show that there exists an intermediate field L containing K with L/F Galois and
with [L : F]|n!

hint: depending on how you do this, it may be useful to remember that if a + b = n, then n! is divisible
by alb! (because of binomial coefficients)

11. (optional/review) Let G be a finite group. Show that there exists some field extension E/F which is
G-Galois.

12. (optional/review) Let G be a finite group and H a subgroup of G. Show that there exists a normal
subgroup N C H with [G : N]’[G - H)\.

13. (optional/review) Prove the following statement or give a counterexample:
If F C K C F are fields with F/K and K/F Galois then E/F is Galois.

14. (optional/review) Describe the splitting field of z# — 5 over Q and compute its Galois group.

15. (optional/review) Give an example of a UFD which is not a PID (and justify your answer).

gl g

16. (optional/review) Consider the F-algebra A = F[x]/z?. l/

\ ?C}a -FaF

(a) Compute the automorphism group of A as an F-algebra. L/ Ft/.)‘_ —_—  —C ‘t‘ X

x* x*

x—> a+bx

(b) Suppose E/F is a Galois extension. Show that if B is any F-algebra suchltlhat ErAXE ®tB
as F-algebras, then A = B as F-algebras.

X0 a* v2abx

H(Ga (B, €% ) = 95 by
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