

$$\frac{e_{K'}}{a} \left(x^{2}, xy\right) \leq \left(\frac{1}{2} xy \right)^{2} \qquad (a \text{ not } y \text{ may})^{2} \\ \frac{a}{a} \int \frac{1}{\sqrt{a}} = (x) \qquad xy \in Q, x \notin Q \\ \frac{1}{\sqrt{a}} = \left\{ (0, b) \right\} \qquad \text{then } y^{n} \in Q \text{ some } n. \\ \frac{1}{\sqrt{a}} = \left\{ (2, 2) \right\} \qquad (z, b) \\ \frac{1}{\sqrt$$

Lem (I Z Nach then red(R) = JO is a nilpolatidal.
Pli rad(R) is 1.9. (X11-XX) = rad(R)
X¹¹₁ = O socn = = rad(R)² = 0.
Pd I a R is nilpolat if
$$4xeI = 3n, st. x^{4}=0$$

To R is nilpolat if $I^{n}=0$ socn.
Gri (I) I a R North. then (SI)ⁿ = I socn.
Pli coresp. then $R/I \longrightarrow R V$
I = $AO(2)$ R North.
 $R = Ass(P/I)$ with $P = JR$; soce i.
Here $R/P \longrightarrow R/I$
 $1 \longrightarrow r + I$ $r + I \Rightarrow r + soce of the Q_{1}'s.$
Let $J = TT Q_{1}$ when $r + Q_{1}$
 $r \in Q_{1}$ if $j \in A : N'$

$$r \subseteq r \prod Q_i = (\bigcap Q_j) \prod Q_i \leq \bigcap Q_i = I$$

$$i \in N' \qquad (j \in N N) \qquad i \in N'$$

$$\Rightarrow J \in (I : r R)_R = (O : \overline{r} f | I)_{P/I} = Gnn(\overline{r}) = P$$

$$\prod Q_i \leq P \Rightarrow Q_i \leq P \text{ some } i \in N'$$

$$i \in N \qquad i \in r \notin Q_i.$$

$$Q_{i} \subseteq P \implies \nabla Q_{i} \subseteq P \qquad P_{i} \subseteq P$$

$$\stackrel{"}{P_{i}}$$

$$P = (I : r R) \quad r \notin Q_{i} \quad r P \subseteq I \subseteq Q_{i}$$

$$P = (I, N =)$$

 $Q_i p = p = P_i = P_i$
 $P_i = P_i$

Conversely, if
$$P_i = Sa: with P_i \in Ass(P(D))$$

 $\left(\bigcap_{j \neq i}^{0} O_j \right) \notin I$ but $P_i^n = Sa_i^{n} \in Q_i$ aloge early
 $P_i^n \bigcap_{j \neq i}^{0} SI$ aloge early.
 $P_i^{n-1} \bigcap_{j \neq i}^{0} \# I$ choice $x \in \left(P_i^{n-1} \bigcap_{j \neq i}^{0} O_j \right) I$
 $so x \notin Q_i$ but $P_i x \in I \implies P_i \leq aun(Q) \cong P$
 $P_{i} = Sa_i^n = Q_i$
 $P_i = Sa_i^{n-1} \bigcap_{j \neq i}^{0} \# I$ choice $x \in \left(P_i^{n-1} \bigcap_{j \neq i}^{0} O_j \right) = P$
 $P_i \leq x \in Q_i$ but $P_i x \in I \implies P_i \leq aun(Q) \cong P$
 $P_i \leq I \leq Q_i$
 $P_i \leq P_i = Q_i$
 $P_i = P_i = P_i$