R intgral Domain frac (R) quo (R) denote frec. fueld

$$
\begin{array}{r}
\operatorname{frac}(R)=\left\{\left.\frac{a}{b} \right\rvert\, a, h \in R, b \neq 0\right\} \\
\frac{a}{b}=\frac{c}{j} \text { if } a d=b c
\end{array}
$$

Ex: $\mathbb{Z}[i]=R=\{a+b i \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$

$$
\begin{aligned}
& \operatorname{frac} \mathbb{Z}[i]=\left\{\left.\frac{a+b i}{c+d i} \right\rvert\, a, b \ldots\right\} \text { wi compliatad } \\
& \text { adduponi,mult. } \\
& \mathbb{Q}[i]=Q \otimes Q_{i} \subset \mathbb{C}
\end{aligned}
$$

checki this a fell

$$
(a+b i)\left(\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i\right)=1
$$

Q [i] feld, contars \mathbb{Z} Ci]

So frow $\mathbb{Z}[i] \rightarrow Q[i]$
$k r=0$ snce no nontrinal idects, not omap sime $1 \mapsto 1$.

$$
\Rightarrow \simeq!
$$

Morali Abstact lacalization usefol because it exiots. In practice, one offen can Do better.

Ex $R=\mathbb{C} \mathbb{\pi} \times \mathbb{t} \quad$ trac $R=\left\{\frac{f}{g}\right\}$

$$
\mathbb{C}((x))=\left\{\sum_{i=d} a_{i} x^{i}\right\} \text { is a feld contry } R \text {. }
$$

why field?

1. if $f(x) \in x \mathbb{C} \llbracket x \rrbracket$

$$
\left(\sum_{i=0}^{\infty} f(x)^{i}\right)(1-f(x))=1
$$

nole: $\mathbb{C}^{*} \oplus \times \mathbb{C}[x]=\mathbb{C} \mathbb{C} \mathbb{D}^{*}$
2. if $f(x)=\sum_{i \geqslant 0} a_{i} x^{i}$ then

$$
f(x)=x^{-d} a_{d}^{-1}(1-g(x))
$$

"Portal Denominaters"

$$
\begin{aligned}
& \mathbb{Z}[1 / 5]=\left\{\left.\frac{a}{s^{n}} \right\rvert\, a \in \mathbb{X}, n \geqslant 0\right\} \subset Q \\
& \mathbb{Z}[1 / 5,1 / 3]=\mathbb{Z}[1 / 5] \\
& \mathbb{C}[x, y]\left[x^{-1}\right]=\left\{\frac{f(x, y)}{x^{n}}\right\} \\
& \mathbb{C}[x, y]\left[x^{-1},(y-1)^{-1}\right] \\
& R\left[S^{-1}\right](o \& S) \mathbb{Z}[1 / 3]=\mathbb{Z}\left[\left\{1,3,3^{2}, \ldots\right\}^{-1}\right]
\end{aligned}
$$

if R is adomain, this means the suly. of $\operatorname{frac}(R)$ consot $f\left\{\frac{a}{b}\right.$ threR $\left.\mid b \in S\right\}$

$$
S=\text { submaniod of }(R, \cdot)
$$

If R not adomain, but S consists of rydar elements

$$
R\left[S^{-1}\right]=\left\{\frac{a}{b}, b \in S\right\} \text { suve } \begin{gathered}
\text { nules asbabere. }
\end{gathered} \quad=\begin{aligned}
& \text { nonzero, } \\
& \text { non-zerotivisus }
\end{aligned}
$$

Det R commutatre ry, reR is neguler it $r \neq 0$ and $r s=0 \Rightarrow s=0$.

What if $s \in S$ is a zero dunser?
nont $R \longrightarrow R\left[S^{-1}\right]$
elemants of S map to units in $R\left[S^{-1}\right]$
if $s x=0$ then in $R\left[S^{-1}\right]$ need to hae

$$
\begin{array}{r}
\begin{array}{r}
\bar{x}=0 \\
\bar{s} \bar{x}=0 \\
s^{-1} \bar{s}=0
\end{array} \\
\begin{array}{l}
I=\{r \in R \mid r s=0 \text { sove } s+s\}^{\bar{x}}=0 \\
\bar{S}=\{s+I \mid s \in S\} \in R / I \\
R\left[s^{-1}\right] \equiv R / I\left[S^{-1}\right]
\end{array}
\end{array}
$$

$$
\begin{gathered}
R\left[S^{\prime}\right]=\left\{\left.\frac{a}{b} \right\rvert\, a \in R, h \in S\right\} \text { sare ap } \\
\frac{a}{b} \text { eq. class of }(a, b) \in R \times S \text { w/rlto } \\
\text { erelatur } \\
(a, b) \sim\left(a^{\prime}, b^{\prime}\right) \\
t\left(a b^{\prime}-a^{\prime} b\right)=0 \quad t \in S
\end{gathered}
$$

Chinese Remaindr Themem
R commiry $I, J \triangleleft R$, me say
$I+J$ are comaximal if

$$
I+J=R \text {. }
$$

Noter If $I, J \Delta R$ comaximil then

$$
I \cap J=I J .
$$

Pf $\operatorname{IJ} \subset \operatorname{InJ} \checkmark$

$$
I \cap J=(I \cap J) R=(I \cap J)(I+J)
$$

$$
\begin{aligned}
& =(I \cap J) I+(I \cap J) J \\
& C J I+I J=I J V
\end{aligned}
$$

Thervem (CRT) if $I, J \Delta R$ comaximal

$$
R_{/ I J} \simeq R / I \times R / J
$$

Pf since $R=I+J$, can wrte $1=e+f$ $e \in I, f \in J$.
cansids \bar{f} in R / I and $\bar{e} \in R / J$

$$
\begin{aligned}
& R \rightarrow R / I, ~ R / J \\
& 1 \longrightarrow \overline{e+f}, \overline{e+f} \\
& \bar{f}=\bar{e}+\bar{f}, \bar{e}+\bar{f}=\bar{e}
\end{aligned}
$$

so $\quad f \longmapsto 1$ in $R / I d$ oin R / J

$$
e \longmapsto 1 \text { in } R / J \text { i, } 0 \text { in } R / \Sigma
$$

$$
R \longrightarrow R / I \times R / J
$$

$x f+y e \longmapsto(\bar{x}, \bar{y}) \quad$ sa sugedre.
lanel?
$r \in R$ in kreliff $r \in I: d \in J$

$$
k_{r}=\operatorname{In} J=I J .
$$

$\mathbb{Z} / n \mathbb{Z} \quad n=a, b \quad(a, b)=1 \quad a \mathbb{Z}+b \mathbb{Z}=\mathbb{Z}$

$$
{ }^{2} \mathbb{z} / a z \times \mathbb{z} / b \mathbb{Z}
$$

smivly $F[x]=R \quad(f, g)=1$

$$
F[x] / f g \simeq F[x] / f \times F[x] / g
$$

Prinapal Ideal Domains
Det A iteal $I \Delta R$ is prinnipal if $I=(a)$, some acR.
Def A commutative domain R is a PID iff all ideals $I \Delta R$ are principal.

Ex \mathbb{Z} (and other Eodidean domains)
(if $\Gamma \varangle \mathbb{Z}$ can choose $d \in I$ wo $\mid \partial 1$ minimal. if $n \in I,(\partial, n)=x \partial+y n$, we have

$$
\begin{aligned}
& (\partial, n) \in I \text {, but }|(\partial, n)| \leq|\partial| \text { so }=\text {. } \\
& \quad \Rightarrow(\partial, n)= \pm d \Rightarrow n \in \partial \mathbb{Z} . \Rightarrow I=\partial \mathbb{Z})
\end{aligned}
$$

Ex: $F[x]$ Fa fell.
Pop if R is a PID, all prime ideals of R are maximal.
Pf, subpar $P^{x^{0}} \Delta R$ pine, $P=\rho R$ suppose $P \leq I \Delta R$. write $I=m R$
so $p=m r$ some $r \quad m r=p \in P \Rightarrow m \in P_{\text {on }}$ $r \in \mathcal{P}$.

$$
\begin{aligned}
& \text { if } m \in P \Rightarrow m R \subset P \Rightarrow P=I . \\
& \\
& \text { if } r \in P \Rightarrow r=p s \quad p(1-m s)=0 \\
& \text { in } m r=m s p \\
& R \text { daman } \Rightarrow m s=1 \\
& \Rightarrow m \in R^{*} \\
& I= m R=R . \quad D .
\end{aligned}
$$

Cor $R[x]$ is aPID $\Leftrightarrow R$ afeld.
Pt

$$
\begin{aligned}
& \Leftarrow l \\
& \Rightarrow \text { let } I=x R[x] \quad R[x] / I \simeq R \\
& R[x] P[D \Rightarrow \text { a demain } \\
& R \subset R[x] \Rightarrow R \text { ademain, } \\
& R[x] / I \text { domain } \Rightarrow I \text { pme. } \\
& \Rightarrow I \text { maxl } R[x] / I \text { feld } \\
& R
\end{aligned}
$$

