Correspendence theonem for localization
Rcommutiter y, SCR moltiplicatre set then Jbijectre comespondence
$\left\{\right.$ ideals of $\left.R\left[S^{-1}\right]\right\} \longleftrightarrow\{$ iveals of R digjent from $S\}$
if $y: R \rightarrow R\left[S^{-1}\right]$

$$
\begin{gathered}
I \longmapsto \varphi^{-1(I)} \\
J R\left[S^{-1}\right] \longleftrightarrow J
\end{gathered}
$$

Some rings

$$
\begin{aligned}
& \mathbb{C}[x] \\
& \mathbb{P}[x, y] /(x+y) \simeq \mathbb{C}[x]
\end{aligned}
$$

$\bar{m}=(\bar{x}, \bar{y}) \quad$ (i.e. $\quad(x, y) /\left(y^{2}-x^{3}\right)$)
Claim: wis not principal.

Note: $\mathbb{C}\left[t^{2}, t^{3}\right] \subset \mathbb{C}[t]$

If it was, $\exists \bar{f} \bar{f}_{E} \bar{m}$ sit. $\bar{m}=(\bar{f})$
this wold mean: $m=(x, y)=\left(f, y^{2}-x^{3}\right)$
look in $R / \bar{m}^{2}=R /\left(\bar{x}^{2}, \bar{y} \bar{y}, \bar{y}^{2}\right)$

$$
=\mathbb{C}[x, y] / m^{2}=\mathbb{C}[x, y] /\left(x^{2}, x y, y^{2}\right)
$$

$\bar{m},(\bar{f}) \subseteq R \sim$ ines in R / \bar{m}^{2}

$$
(\tilde{f}), \bar{m} \text { in } R / m^{2}=\frac{C(x, y)}{m^{2}}
$$

$\tilde{m}=P \tilde{x}+\mathbb{C} \tilde{y} \quad f=a x+b y+H_{O} T^{\prime} s$
2dillle $(\tilde{f})=\mathbb{C}(a x+b y) \leftarrow 1-\operatorname{dim}^{\prime} l / c$

Def R cammutatue domain. Let $r \in R \backslash\{0\}, r \notin R^{*}$.

- We syy that r is irreducible if $r=a b \Rightarrow a$ or b is in R^{*}.
- We soy that r is prome if (r) is prue. i.e. $r|a b \Longleftrightarrow r| a$ or $r \mid b$
- We say that $a, b \in R \backslash\{0\}$, nonunits are associnte if $a=b u$ same $u \in R^{8}$.

Def R is a UFD if $\forall r \in R \backslash\{0\} \cup R^{+}$, we canwnite $r=p, \cdots p_{n} p i$ irreduable \&' pi unique up to pemutaton's, associntes.

Rem proe \Rightarrow inned
p pre, $p=a b \Rightarrow a b \in(p)$ say $a \in(p)$

$$
p \text { pue, } p=a s=p c b \Rightarrow b c=1 \quad b \in R^{+} D \text {. }
$$

but irred \Rightarrow pme in genenl
Rem if R is a UFD, irned \Rightarrow prue.
Pt, it $P \in R$ irned, suppase $p l a b \Rightarrow p c=a b$

$$
p \cdot c_{1}-c_{i}=a_{1}-a_{j} b_{1}-b_{k}
$$

$\Rightarrow p \mid$ same a or b.
if $r=a b=c d$ different factrzatuons moto irneds Hen (a) $\rightarrow c \partial$ if $c \in(a)$ then

$$
c=a r \Rightarrow \operatorname{irnda} \text { a }
$$

exi $\mathbb{Z}[\sqrt{-5}] \quad 6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$

Thm\& R romain. R UFD $\Leftrightarrow R[x]$ UFD
mast martand $y^{\text {s: }}$

$$
\begin{aligned}
& \mathbb{Z}\left[x_{1},-, x_{n}\right] / I \\
& \mathbb{Q} E \quad>/ I \\
& Q C \quad] / I
\end{aligned}
$$

Lemma (Gauss' Lemmx) Let R he a UFD.

$$
f(x) \in R[x] \text {. Let } F=\text { frac }(R) \text {. }
$$

If $f(x)$ factos in $F[x]$ as $f(x)=p(x) q(x)$
then can factr $f(x)$ in $R[x]$ as $\tilde{p}(x) \tilde{q}^{(x)}$
whe $\tilde{p}(x)=a p(x), \tilde{q}(x)=b q(x), a, b \in F$.

Lemna R camming, $I O R$ pre $\Leftrightarrow I \|[x] \propto R[x]$
IR[x]
Pf: R / I domain $\Leftrightarrow(R / I)[x]$ a domain

$$
R[x] \longrightarrow(R / I)[x]
$$

krued is $I[x]$.
Pf of Gavss' lemma
Suppase $f \in R[x], f=p q, p, q \in f[x]$.
Cleardenomimatrs i.e. $p=\sum p_{i} x^{i} \quad q=\sum q_{i} x^{i}$

$$
q_{i}=\frac{c_{i}}{\partial_{i}} \quad p_{i}=\frac{a_{i}}{h_{i}} \quad \partial=\left(\pi \partial_{i}\right)\left(\pi \zeta_{i}\right)
$$

get $\partial t=p^{\prime} q^{\prime}$
So inath worts, we know can facts

$$
\lambda f=\tilde{p} \tilde{\varepsilon} \quad \tilde{p} \cdot \tilde{\varepsilon} \quad \text { ults } f p^{\prime}, \lambda \in R .
$$

chaase such a preentitun with λ harg ${ }^{a}$ mimimal \# of imed facturs.
wante it's a vait.

If not, san π tacts of λ.
irned.
consude $\tilde{p} \tilde{q}=\lambda f$ in $R[x] / \pi R[x)=(R /(T))[x]$
RHS $\rightarrow 0 \Rightarrow \widetilde{p} \tilde{q}=0$ in thing
π ined RUFD $\Rightarrow \pi$ pre \Rightarrow $\pi R(x)$ pre. \Rightarrow domin
soy $\tilde{p} \in \pi R[x] \Rightarrow$ each creff of \tilde{p} dmoslly by π

$$
\lambda f=\pi \lambda^{\prime} f=\pi \tilde{\tilde{p}} \tilde{q}
$$

$\lambda^{\prime} f=\tilde{\tilde{p}} \tilde{q} \quad \lambda^{\prime}$ oneless fadr y.

Pront of Theovem \neq
If $R[x]$ is a UFD \Rightarrow get futmzatuns of $r \in R \subset R[x]$ into ireds in $R[x]$
\Rightarrow gias a fuctyatun in R. uniquenass fum $R[x]$ Cnote: $R[x)^{*}=R^{*}$)

For the conurse, supplase R is a UFD.
suppase $f(x) \in R[x]$, Let $d=$ ged of couffs $(f(x)$
$\left(\operatorname{gcd}\left\{a_{14}, a_{n}\right\}=d\right.$ meang $\partial \mid a_{i}$ all i i elaiall $t \Rightarrow$
there exist via $d=\pi$ camomon ineds
in ajls.

$$
f(x)=\delta g(x)
$$

$$
e(\partial)
$$

canseds $g(x)$ in $F[x]$ UPD UFD, can ante

$$
g(x)=g_{1}(x) \ldots g_{n}(x) \text { in } F[x] \text { ineds } g_{i}
$$

by Gauss, can assue $g_{i}(x) \in R[x]$.
Clam ged \{calfs ofgi $\}=1$ all i.
Unique?

$$
\begin{aligned}
& \partial g_{1}-g_{n}=\partial^{\prime} h_{1}, h_{m} \quad \text { in } F[x], g_{i}=h_{j} \text { upto } \\
& \text { panm, asoc. } \\
& \partial g_{1}--g_{n}=\lambda^{\prime} h_{1}-h_{n} \quad g_{i}=\lambda_{i} h_{i} \quad \lambda_{i}=\frac{a_{i}}{b_{i}} \\
& b_{i} g_{i}=a_{i} h_{i} \quad a_{i} h_{i} c R
\end{aligned}
$$

WLOG, a_{i}, h_{i} have $n a$ ired fectrs in common (could canel in expussion b λ_{i})
if ρ fach of a_{i} then $\rho \not h_{i} \Rightarrow \rho l g_{i}$ contadisty fact that ged \{calfs af $\left.g_{i}\right\}=1$.
$\Rightarrow w \log a_{i}=1 \quad \lambda_{i}=\frac{1}{b_{i}}$
$h_{i} g_{i}=h_{i} \Rightarrow h_{i}$ not ined in $R[x]$.
(unless hi unit)

