- (1) Let x(t) = 7t and $y(t) = 5\sin(3\pi t)$ be analog signals on the interval $0 \le t \le 1$ and set z(t) = x(t) + 2y(t).
 - (a) Sample x(t) and y(t) at times t = 0, 0.25, 0.5, 0.75 to produce a sample vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^4$. Verify that $\mathbf{x} + 2\mathbf{y}$ is the vector \mathbf{z} obtained by sampling z(t) at these same times. Sampling is linear.
 - (b) For $\mathbf{u} \in \mathbb{R}^4$ let $q(\mathbf{u})$ denote the vector whose components are obtained by applying the floor function to each component of \mathbf{u} . If \mathbf{z} , \mathbf{x} , and \mathbf{y} are the vectors in (a), show that $q(\mathbf{z}) \neq q(\mathbf{x}) + 2q(\mathbf{y})$. Quantization is nonlinear.
- (2) Let \mathbb{F} be \mathbb{R} or \mathbb{C} . Show that the following sets V with the given operations of vector addition and scalar multiplication satisfy the vector space axioms A1-A5 in Section 1.3.
 - (a) V = F^{m×n}, with the usual addition and scalar multiplication of matrices.
 (b) Let X be the interval of real numbers a ≤ x ≤ b and V = C_F(X) (all continuous F-valued functions on X) with the usual addition and scalar multiplication of functions. (HINT: From calculus cf(x) and f(x) + g(x) are continuous if f(x) and g(x) are continuous and c is a constant.)
 - (c) Let V be the set of all polynomials $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ with $a_j \in \mathbb{F}$ and n any nonnegative integer, with the usual addition and scalar multiplication of functions.
- Objective whether the following sets M of matrices are subspaces of $\mathbb{R}^{2\times 2}$. When this is the case, find a basis for M.
 - (a) M consists of all 2×2 diagonal matrices.
 - (b) M consists of all 2×2 upper triangular matrices (zero below diagonal).
 - (c) M consists of all symmetric 2×2 matrices.
 - (d) M consists of all 2×2 matrices A with det A = 0.
- (4) Let V be the real vector space of the continuous real-valued functions on the interval $-1 \le x \le 1$. Let U be the set of all functions $f \in V$ such that f(-1) = 2f(1). Prove that U is a subspace of V.