Applied Algebra, Homework 4

1. Suppose $f(t)=2^{x}$ on the interval $[0,4)$ and extended periodically (with period 4). Consider the sampled function $f[j]$ where $j \in \mathbb{Z} / 4 \mathbb{Z}$. Find $\hat{f}[1], \hat{f}[2]$ (show your work!).
2. Consider the space $\ell_{\mathbb{C}}(\mathbb{Z} / 4 \mathbb{Z})=\mathbb{C}^{4}$ of sampled functions, with basis e_{j} defined by $e_{j}[k]=\delta_{j, k}$. Define a linear transformation $S: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ by $S e_{0}=e_{1}, S e_{1}=e_{2}, S e_{2}=e_{3}, S e_{3}=e_{0}$. Show that the basic discrete wavefunctions $E_{j}, j=0,1,2,3$ are eigenvectors for S, and compute their eigenvalues.
