Applied Algebra Worksheet Prep for Lecture 13

Consider the following scheme to make a wavelet. Given a signal x on $2 m=N$ sample points, define the trend t and detail d to be:
$t[k]=\frac{1}{4} x[2 k]+\frac{3}{4} x[2 k+1]$
$d[k]=t[k]-x[2 k+1]$

Problems:

- Write down the wavelet analysis matrix in the case $m=1, N=2$
- Find its inverse, T_{s}, the wavelet synthesis matrix

The two columns of T_{s} are our new basic wavelets: the first one is the trend wavelet w and the second is the detail wavelet w^{\prime}.

Now, let's ask how these compare to the Haar Wavelets.

More Problems:

- Is the sum of the coeffs of w positive?
- Is the sum of the coeffs of w^{\prime} zero?
- Are the sum of the squares of the coeffs of both of these the same?
- Are they orthogonal?
- How might these be better or worse than Haar wavelets from a practical point of view?

