Applied Algebra Worksheet for lecture 16

Comments, questions and feedback due before class on Monday, April 6 (before 7am).

Completed worksheets due on Thursday, April 9.

Consider the potential wavelet transformation given by the following steps:

Start by breaking up your signal into even and odd parts
$\left[x_{\text {even }}, x_{\text {odd }}\right]$

Then using $p[k]=-x[2 k]+2 x[2 k+2]$ as a prediction for the value at $x[2 k+$ $1]$, set the detail d to be
$d[k]=x_{\text {odd }}[k]-p[k]$
And let P be the linear transformation taking $\left[x_{\text {even }}, x_{\text {odd }}\right]$ to $\left[x_{\text {even }}, d\right]$.
Finally, define the trend to be $s[k]=x_{\text {even }}[k]+d[k]-2 d[k-1]$.

Let U be the linear transformation taking $\left[x_{\text {even }}, d\right]$ to $[s, d]$.

Problems

1. Write a matrix in block form for the linear transformation P
2. Write a matrix in block form for the linear transformation U
3. Write a matrix in block form for the linear transformation T_{a} which takes the vector $\left[x_{\text {even }}, x_{\text {odd }}\right]$ to $[s, d]$
4. Give an explicit presentation for this matrix in the case $N=4$
