Given a wavelet trains farm with analysis matrix T_{a}, recall me may write

$$
T_{a} x=\left[\begin{array}{l}
U \\
\hdashline V
\end{array}\right] x=\left[\begin{array}{l}
U_{x} \\
\hdashline V_{x}
\end{array}\right]=\left[\begin{array}{l}
s \\
d
\end{array}\right]
$$

If we consider the 2-d wavekt transform

$$
T_{a} z\left(T_{a}\right)^{t}=\left[\begin{array}{ll}
s s & s d \\
d s & d d
\end{array}\right]
$$

how can we express the block entries in terms of $z, U, V, U^{t}, \nu^{t} ?$

Apply the 2-d Haar Wavelet transform to the signals

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \text { and }\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

