Busic setop of samply / quantizaton
Signal $f(t) \quad g(x, y)$ ete

$$
C_{\mathbb{R}}([a, b]) \quad C_{\mathbb{R}}([a, b] \times[c, d])
$$

eg. amplitude of signol e.g. shaly of ports of a picture

$$
\left[\begin{array}{ll}
\text { Def } & S \subset \mathbb{R} \text { or } \mathbb{R}^{2} \text { or } \mathbb{R}^{n} \text { nyion } \\
C_{\mathbb{R}}(S)=\left\{f i S \rightarrow \mathbb{R} \mid f_{\text {is cations }}\right\} \\
C_{\mathbb{C}}(S)=\{ & \& \mid
\end{array}\right]
$$

Note $G_{\mathbb{R}}(S) \subset C_{\mathbb{C}}(S)$ and it is eften mone converat to throuk abaut complex \#s.

We may write $C_{F}(S)$ where F can stand fo \mathbb{R} or \mathbb{C} when we dou't waut to make a chaice.

Samply: choore sample paints

$$
\begin{aligned}
& \text { phy: choore samp } \\
& t_{0}, t_{1}, \ldots, t_{N-1} \in[a, b] \text { on }\left[x_{i} j \in[a, b] \times[1,8]\right. \text {, }
\end{aligned}
$$

and consider

$$
\vec{y}=\left[\begin{array}{c}
f\left(t_{0}\right) \\
f\left(t_{1}\right) \\
\vdots \\
f\left(t_{N-1}\right)
\end{array}\right] \begin{aligned}
& \text { a samply } f t \\
&
\end{aligned}
$$

we thrik of \vec{y} as an approximaton of f

Quantizatur
It is common to use binary quantryation (binary giy'ts)
So, if values if f range in sone rutral $\left[y_{\text {min }}, y_{\text {max }}\right]$, then
decided
1 bit quantisation
2 bit quantrowta

if $y_{\text {min }}=0 \quad y_{\text {max }}=1$
we asizn a y value in an n-bitrep

$$
\text { to }\left\lfloor y \cdot 2^{n}\right] \cdot \frac{1}{2^{n}}
$$

In gemal:

Vectr speces
Some urfol vecto sacies
$C_{F}(S)$ is an F-vector opae polynomisls of dyree $\leq n$ is an $n+1$ divil vectroppe
Prop if $f g$ are palynamials $\begin{gathered}d y y \\ v\end{gathered}$ same vales at distrect pts x_{0}, \ldots, x_{n}, then $f=g$
Pf. We can assure $F=\mathbb{C}$ sme $=$ is $=$. in this care, FTA $\Rightarrow f-g=\prod_{i=1}^{n}\left(x-a_{i}\right)$ or O
know that at $x_{i}, f\left(x_{i}\right)=y\left(x_{i}\right) \Rightarrow(f-y)\left(x_{i}\right)=0$
$\Rightarrow a_{j}=x_{i}$ save j get $n+1$ distrat factrs

$$
w_{k} \Rightarrow f-g=0.1
$$

Car fix dobtat pho $a_{0, \ldots, a_{n} \in F}$

$$
\begin{aligned}
& \left\{\text { poly, } A g_{y} \leqslant n\right\} \longrightarrow F^{n+1} \text { via } \\
& f \longmapsto\left[\begin{array}{c}
f\left(a_{0}\right) \\
\vdots \\
f\left(a_{n}\right)
\end{array}\right] \text { is an isam } \begin{array}{c}
\text { isectropes. } \\
\text { in }
\end{array}
\end{aligned}
$$

 it re hae $b_{01}, b_{n} \in f^{n+1}$, dete

$$
f(x)=\sum_{i=0}^{n}[\underbrace{\prod_{j \neq i}\left(\frac{x-a_{j}}{a_{i}-a_{j}}\right)}_{\substack{\prod_{i}}}]
$$

So surgecte

$$
\begin{aligned}
& \longrightarrow \text { not needed sme } \\
& \begin{array}{l}
\text { f.d. vectrspes } \\
\text { saredr. }
\end{array}
\end{aligned}
$$

We recall, F^{n} has an inns product

$$
\left(x_{1}, \ldots, x_{n}\right) \cdot\left(y_{1}, \ldots, y_{n}\right) \equiv \sum x_{i} y_{i}
$$

allinately

$$
=\left[\begin{array}{lll}
x_{1} & \ldots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
\vdots \\
y_{n}
\end{array}\right]
$$

Suppose re have a basis $\vec{b}_{1, \ldots,} \vec{b}_{n}$ fo F^{n}

$$
\text { i.e. } \vec{b}_{i}=\left[\begin{array}{c}
b_{i 1} \\
\vdots \\
b_{i n}
\end{array}\right]
$$

a dual basis is a basis of erects

$$
\stackrel{f_{1}-, f_{n}}{s} \text { such that } \vec{f}_{i} \vec{b}_{j}=\delta_{i j}
$$

This is extemely uatul in practue
Suppore re have a usefl hasis $\vec{b}_{1, \ldots,} \vec{F}_{n}$ and sare rects $\vec{v} \in F^{n}$
re know abstractly that we can whle $\vec{v}=\sum \beta_{i} \vec{b}_{i}$ some β_{i}, but how do ve fnd the pis'?
if re know ${ }_{v}{ }_{v}{ }_{1} I_{i}^{\prime}$'s in sta Dod hris
$r F^{n}$, can compte $\vec{v} \cdot \vec{f}_{j}$

$$
\begin{aligned}
=\left(\sum \beta_{i} \vec{b}_{i}\right) \cdot \vec{F}_{j} & =\sum \beta_{i}\left(\vec{b}_{i} \cdot \vec{t}_{j}\right) \\
& =\beta_{j}!
\end{aligned}
$$

So lets you remunt inturns of b_{i}^{\prime} 's.
matrix notation

$$
\vec{b}_{i} \cdot \vec{f}_{j}=\delta_{i j} \text { means }
$$

wite $f_{j}=\left(f_{1 j}, \ldots f_{n j}\right)$ as a column

$$
\left[\begin{array}{lll}
f_{i j} & \cdots & f_{n j}
\end{array}\right]\left[\begin{array}{c}
b_{i 1} \\
\vdots \\
\vdots \\
b_{i n}
\end{array}\right]=\delta_{i j}
$$

but this is the matrix equitun

$$
\left[\begin{array}{cccc}
f_{11} & f_{21} & \cdots & f_{n 1} \\
f_{12} & f_{22} & & f_{n 2} \\
\vdots & & \vdots \\
f_{1 n} & \cdots & \cdots & f_{n 1}
\end{array}\right]\left[\begin{array}{cccc}
b_{11} & b_{21} & \cdots & b_{n 1} \\
b_{12} & b_{22} & & \vdots \\
\vdots & \vdots & & \\
b_{1 n} & b_{2 n} & \cdots & b_{n n}
\end{array}\right]=I_{n}
$$

Lets nead this in Ins alychini
gren a bessis $\vec{b}_{1}, \ldots, \vec{b}_{n}, \quad B=$ matio with $\vec{b}_{i}^{\prime} s$ as colurns. this is the chaged $\begin{gathered}\text { ass }\end{gathered}$ matrix: $\left\{\vec{e}_{i}\right\} \xrightarrow{B}\left\{\vec{n}_{i}\right\}$

