Basic setup of samply /quantization

Def SCR or \mathbb{R}^2 or \mathbb{R}^n region $C_{\mathbb{R}}(S) = \{f: S \rightarrow \mathbb{R} \mid f \text{ is contrary}\}$ $C_{\mathbb{R}}(S) = \{f: S \rightarrow \mathbb{R} \mid f \text{ is contrary}\}$ $C_{\mathbb{R}}(S) = \{f: S \rightarrow \mathbb{R} \mid f \text{ is contrary}\}$ Note CR(S) CCC(S) and it is after more convert to though about complex #5.

We may write
$$C_F(S)$$
 where F can stand
fr R or G when we don't want to make
a choice.

and consider

$$\vec{y} = \begin{pmatrix} f(t_0) \\ f(t_1) \\ \vdots \\ f(t_{N-1}) \end{pmatrix}$$
 a samply of f
we that $f(y) = a_1 = a_1 a_2 a_2 a_3$

if ynn=0 ymr=1
we asryn a y value in an nobitrep
to [y.2ⁿ].
In gennal:

$$\left(\frac{y-y_{min}}{y_{max}-y_{min}}\right) 2^{n} \cdot \left(\frac{y_{max}-y_{min}}{2^{n}}\right) + y_{min}$$

between 05,1
encody how hyb
in gennal

Vector speces
Some useful vector speces

$$C_{p}(S)$$
 is an F-vector spece
polynomials of dyree Sn is an nellowil
vector spec
 $Prop$ if fig are polynomials in X and have
some veles of district pts X0,-----Xn, then
 $f=g$
 A_{i} We can assure $F=\mathbb{C}$ since = is=:
in this case, $FTA \implies f-g = \prod_{i=1}^{n} (X-a_{i})^{orO}$
know that at Xi, $f(X_{i}) = g(X_{i}) \implies (f-g)(X_{i}) \gg$
 $\implies f-g=0.D$.

We recall,
$$F^n$$
 has an inner product
 $(x_{1}, ..., x_n) \cdot (y_{1}, ..., y_n) = \sum x_i y_i$
allowsteby
 $= \sum x_1 - ... x_n \sum \begin{bmatrix} y_1 \\ y_n \end{bmatrix}$
Sppore we have a basis $\overline{b}_{1, ..., \overline{b}_n} \ hr F^n$
i.e. $\overline{b}_i = \begin{bmatrix} b_{i1} \\ \vdots \\ b_{in} \end{bmatrix}$
a dual basis is a basis of vects
 $\overline{f}_{1, ..., \overline{f}_n}$ such that $\overline{f}_i \overline{b}_j = \delta_{ij}$

where
$$f_{ij} = (f_{ij}, \dots, f_{nj})$$
 as a column

$$\begin{bmatrix} f_{ij} & \dots & f_{nj} \end{bmatrix} \begin{bmatrix} b_{i1} \\ \vdots \\ \vdots \\ b_{in} \end{bmatrix} = \delta_{ij}$$

but this is the matrix equation

$$\begin{cases}
f_{11} \quad f_{21} \quad \cdots \quad f_{n_1} \\
f_{12} \quad f_{22} \quad \cdots \quad f_{n_2} \\
\vdots \quad \vdots \\
f_{1n} \quad \cdots \quad \cdots \quad f_{n_n}
\end{cases}
\begin{cases}
b_{11} \quad b_{21} \quad \cdots \quad b_{n_1} \\
b_{12} \quad b_{22} \quad \vdots \\
\vdots & \vdots \\
b_{1n} \quad b_{2n} \quad \cdots \quad b_{n_N}
\end{cases} = T_n$$

lets need this in low algolini
given a basis
$$\overline{b}_{1,--,}\overline{b}_{n}$$
, $B = matry with$
 \overline{b}_{1} 's as columns. This is the charge of basis
matrix : { \overline{e}_{1} } $\overline{B} = \overline{f_{1}}$?