Applied Algebra Worksheet for lecture 16

Comments, questions and feedback due before class on Monday, April 6 (before Tam).

Completed worksheets due on Thursday, April 9.

Consider the potential wavelet transformation given by the following steps:

Start by breaking up your signal into even and odd parts

Sky: competed var Strpricampte s us y

1. Write a matrix in block form for the linear transformation P
2. Write a matrix in block form for the linear transformation U \uparrow
3. Write a matrix in block form for the linear transformation T_{a} which takes the vector $\left[x_{\text {even }}, x_{\text {odd }}\right]$ to $[s, d]$
$T_{a}=U P$

Recall:

$$
\begin{array}{r}
\frac{\text { fecal }}{\text { fo }} \operatorname{CDF}(2,2) \quad \text { Haw } \\
\text { Started al predictor } \\
\operatorname{CDF}[2,2) \times[2 k+1] \sim \frac{1}{2} \times[2 k]+\frac{1}{2} \times[2 k+2)
\end{array}
$$

Haar $x[2 k+1] \sim x[2 k]$
Dach4 slated al"trend" $\left.\begin{array}{c}\text { update metre }\end{array}\right\} u$
2. Find $u=$ opdatematiox.

$$
\begin{aligned}
& u\left[\begin{array}{l}
x_{\text {even }} \\
d
\end{array}\right]=\left[\begin{array}{l}
s \\
d
\end{array}\right] \\
& U=\left[\begin{array}{ll}
u_{00} & u_{01} \\
u_{10} & u_{11}
\end{array}\right]\left[\begin{array}{ll}
u_{00} & \left.u_{01}\right]\left[\begin{array}{l}
x_{\text {even }} \\
d
\end{array}\right]=s \\
{\left[\begin{array}{ll}
u_{10} & u_{11}
\end{array}\right]\left[\begin{array}{l}
x_{\text {eel }} \\
d
\end{array}\right]=d}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
u_{10} & u_{11}
\end{array}\right]=\left[\begin{array}{ll}
0 & I
\end{array}\right]} \\
& s=u_{00} x_{\text {even }}+u_{0,} d \quad u_{i j}=1 \text { nos trmolmators } \\
& \text { an } m \text {-dim'l } U \text { issue. } \\
& \mathbb{C}^{m} \\
& s[k]=x_{\text {even }}[k]+d[k]-2 d[k \sim 1] \\
& u_{00} x_{\text {even }}=X_{\text {even }} \longleftarrow u_{00}=I \\
& u_{01} d=d-2 S d=(I-2 S) d \\
& \checkmark u_{01}=I-2 S \\
& d=\text { vector }=\left[\begin{array}{c}
d[0] \\
d[1] \\
\vdots \\
d[m-1]
\end{array}\right]=d[0]^{\prime \prime} e_{0}^{\prime \prime}+d[1]^{\prime \prime} e_{1}^{\prime \prime}+\cdots+d\left[m m^{\prime \prime} e_{m-1}^{\prime \prime}\right. \\
& S^{\prime \prime} e_{k}^{\prime \prime}=e_{k+1}^{\prime \prime} \quad S d=d[0]^{\prime \prime} e_{1}^{\prime \prime}+d[1)^{\prime \prime} e_{2}^{\prime \prime}+\cdots \\
& +d[m-2]^{n} e^{\prime}-1 \\
& S_{d}=\left[\begin{array}{l}
d[m-1] \\
d[0] \\
d[1] \\
\vdots \\
d[m-2]
\end{array}\right] \\
& (S d)[k]=d[k-1] \\
& " d[k-1]
\end{aligned}
$$

$$
U=\left[\begin{array}{cc}
I & (I-2 S) \\
0 & I
\end{array}\right]
$$

