Applied Algebra Practice Sheet for Exam 2

This sheet is not meant to be exhaustive, but rather as a supplement to the problems from the homework since the last exam.
1.

Suppose T_{a} is the analysis matrix in the case $N=4$, for a wavelet transform with scaling vector $(1,2,0,0)$ and wavelet vector of $(2,-3,1,0)$. Compute $T_{a}(1,1,1,1)$ and $T_{a}(1,-1,0,0)$.
2.

Suppose we have a wavelet transform given by $x \mapsto(s, d)$ where
$d[k]=x[2 k+1]-x[2 k]-2 x[2 k+2]$
and
$s[k]=x[2 k]+d[k]+3 d[k-1]$.

Find block matrices P, U such that $T_{a}=U P$ split.
3.

For the wavelet transform in the previous problem, find the scaling and wavelet vectors in the case $N=4$.
4.

Recall the two-scale Haar Transform $x \mapsto\left(s_{1}, s_{2}, d_{2}\right)$. This is given by first performing the Haar transform $x \mapsto\left(s_{1}, d_{1}\right)$, then performing a second Haar transform $s_{1} \mapsto\left(s_{2}, d_{2}\right)$ on the first trend, and collecting this all in the vector $\left(s_{1}, s_{2}, d_{2}\right)$. Give a description, in block form, for the matrix which gives this linear transformation $x \mapsto\left(s_{1}, s_{2}, d_{2}\right)$.

Hint: you may need more than 4 blocks!
5.

Consider the following procedures, where T_{a}, T_{s} are the analysis and synthesis matrices for the Haar transform.

- apply T_{a}, look at the coordinates of the resulting vector and set to 0 all coordinates which are sufficiently small. Then apply T_{s} to the resulting vector

2. apply T_{a} to get s, d, replace d with 0 , then apply T_{s}.

3 - apply T_{a} to get s, d, replace s with 0 , then apply T_{s}.
Consider the following goals we might have:

Which of the above operations would be potentially useful for these goals?

Step 1: Revember How to mite Har Wactutantion.

$$
\begin{gathered}
T_{a}=\left[\frac{U}{\nu}\right]=\left[\begin{array}{cc}
\frac{1}{2} I & \frac{1}{2} I \\
\frac{1}{2} I & -\frac{1}{2} I
\end{array}\right] \text { split } \\
T_{a} x=\left[\begin{array}{l}
s \\
d
\end{array}\right] \Rightarrow \begin{array}{l}
s=U_{x} \\
d=\nu_{x}
\end{array}
\end{gathered}
$$

$$
x \longrightarrow\left[\begin{array}{l}
s_{2} \\
d_{2} \\
d_{1}
\end{array}\right]_{\text {"onginal } \partial^{\prime \prime}}=\nu_{x}
$$

 ase has a γ in the batiom (kff.

$$
\begin{aligned}
& 2^{l} \\
& x \rightarrow\left[\begin{array}{l}
u_{x} \\
\overline{v_{x}}
\end{array}\right] \rightarrow\left[\begin{array}{l}
u^{\top} u_{x} \\
\bar{v}^{\top} \bar{u}_{x} \\
\hdashline v_{x}
\end{array}\right]=\left[\begin{array}{l}
s_{2} \\
d_{s} \\
d_{1}
\end{array}\right]
\end{aligned}
$$

