$$
\begin{aligned}
& S=\left\{\begin{array}{c}
e_{0} \rightarrow e_{1} \\
e_{1} \rightarrow e_{2} \\
\vdots \\
e_{3} \rightarrow e_{0}
\end{array}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\right. \\
& E_{j}=\left[\begin{array}{c}
\omega^{j 0} \\
\omega^{j \cdot 1} \\
\vdots \\
\omega^{j \cdot(N-0)}
\end{array}\right]=\left[\begin{array}{c}
i^{j \cdot 0} \\
i^{j \cdot 1} \\
i^{j-2} \\
i^{j-3}
\end{array}\right] \quad j=0 \quad E_{0}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \\
& \begin{aligned}
& N=4 \quad \omega=e^{2 \pi i / N}=e^{2 \pi i / 4}=e^{i \pi / 2} \quad i+\frac{T^{\pi / 2}}{\omega} \\
& \omega i
\end{aligned} \\
& S E_{0}=S\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=E_{0} \\
& S E_{0}=1 \cdot E_{0} \\
& E_{0} \text { is an Eigen vedr } \\
& \text { wl Eigensalue } 1 . \\
& S E_{1}=S\left[\begin{array}{c}
1 \\
i \\
-1 \\
-i
\end{array}\right]=\left[\begin{array}{c}
-i \\
1 \\
i \\
-1
\end{array}\right]=(-i)\left[\begin{array}{c}
1 \\
i \\
-1 \\
-i
\end{array}\right]=(-i) E_{1}
\end{aligned}
$$

E_{1} is an Eigenuects al vate $-i$

Gereal picture: (Gerral N)

$$
S E_{j}=S\left[\begin{array}{c}
\omega^{j-0} \\
\omega^{j-1} \\
\vdots \\
\omega^{j(N-1)}
\end{array}\right]=\left[\begin{array}{c}
\omega^{j(N-1)} \\
\omega^{j 0} \\
\omega^{j-1} \\
\vdots \\
\omega^{j(N-2)}
\end{array}\right]=\omega^{j(N-1)}\left[\begin{array}{c}
\omega^{j j} \\
\omega^{j j-1} \\
\omega^{j-2} \\
\vdots \\
\omega^{j(N-1)}
\end{array}\right]
$$

So:

$$
\begin{aligned}
& S E_{j}=w^{-j} E_{j} \\
& \text { so } E_{j} \text { is an } E \cdot v e d . \\
& \text { wl vale } w^{-j}
\end{aligned}
$$

$$
\begin{aligned}
& \omega^{j(N-1)}=\omega^{j^{N-j}-j} \\
& =\left(\omega^{N j} \omega^{N-j}\right. \\
& \quad \omega^{\omega-j}
\end{aligned}
$$

Recalli $\mathbb{C}^{N}=l_{\mathbb{C}}[\mathbb{Z} / N Z]$
hue hasis vectrs $e_{j}=\left[\begin{array}{l}0 \\ 1 \\ \vdots \\ 0\end{array}\right] e^{\text {th p plice }}$

$$
E_{j}=\left[\begin{array}{c}
\omega^{j^{0}} \\
\vdots \\
\omega^{j(N-1)}
\end{array}\right] \quad \begin{gathered}
e_{j}[k]=\delta_{j k} \\
\mathbb{C}^{N} \text { has an innsproduct }
\end{gathered}
$$

$$
\begin{aligned}
\left\langle\left[\begin{array}{c}
a_{0} \\
\vdots \\
a_{N 1}
\end{array}\right],\left[\begin{array}{c}
b_{0} \\
\vdots \\
b_{N-1}
\end{array}\right]\right. & =\sum_{j=0}^{M-1} \bar{a}_{j} b_{j} \\
& \left\langle E_{j,}, E_{k}\right\rangle=\delta_{j k} \cdot N
\end{aligned}
$$

madx $G=$ chang-thasis hom $E^{\prime} s$ to e's

$$
G=\left[E_{0}\left|E_{1}\right| \ldots E_{N-1}\right] \text { then } \bar{G} G=N I_{N}
$$

So $\Rightarrow \frac{1}{N} \bar{G}=G^{-1}$ is the chge of basis from $\left\{\ddot{\tilde{F}} \quad e_{j}^{\prime}\right.$ s to E_{j}^{\prime} s

So $G^{-1}=\frac{1}{N} F$
"Founer Mabr"
gren $y=\left[\begin{array}{c}Y_{0} \\ \vdots \\ y_{N-1}\end{array}\right]$ samples fon. $\quad \frac{1}{N} F_{y}=\left[\begin{array}{c}\hat{y}_{0} \\ \vdots \\ \hat{y}_{N-1}\end{array}\right]$

$$
y=\sum y_{j} e_{j}=\sum \hat{y}_{j} E_{j}
$$

Filters (ì convolotions)

Dear

accentrate same fereerces, remove / Decrease aths

In Founier hasis, this is an abrias thy to doi these are diagonal!
$E_{0}, E_{1}, E_{2} \ldots, E_{N-1}$ want to incerge E_{j} by afach it 2
 s dec $E_{k} b y$ a fate ats ikeep athos sme:

Can thamk shoot this Diag. matiy as "pointwise mult. "by a samples fon $g=\left[\begin{array}{c}1 \\ 1 \\ 2 \\ 1 \\ \vdots \\ 1 / 3 \\ 1 \\ \vdots \\ 1\end{array}\right]$

$$
f[l] g[l]=f y[l]
$$

in warkhas's!

Natatron / Commetion: y-signal
f - a functor, use to creste a filter.

Deeai f has varos trequeves accur.
$f=\sum \hat{f}[k] E_{k} \quad$ filts ot or signals based an propartors waretoms arse inf.
concreetely: write $f * y$
"y fithed via f"
$\widehat{f * y}[k]: \hat{f}[1] \hat{y}[k]$

$$
\left.f * y=\sum \hat{f}[(B)\} \hat{y}\right) E_{k}
$$

As we've obscured:
S-shit agents has E_{k}^{\prime} 's as eiguvectors gus a set of N distract evens w/ distinct, nonzero evils.
Theorem (Linear Algebra) If T is a nonsizular dragonalizable matrix with district nonzero evils then the only matres which compote with it are ins combinations af powers of T.

$$
\left(T^{\prime} \text { competes } \omega l T \Longleftrightarrow T^{\prime} T=T T^{\prime}\right)
$$

\Rightarrow the only matrices which commute with S are lin- combs of pours of s.
Det A cincolant matrix is one of the form

$$
T=\sum_{j=0}^{N-1} a_{j} S^{j}
$$

$$
3+2 s-s^{3}
$$

Notei in the ware basis, S is diagonal as are all S^{k} 's all circulant matices are diagonal.
But alsa the lus transtimaton $y \stackrel{T_{f}}{\longmapsto} f * y$ is also dinganal in ware hasis

$$
\left[\begin{array}{lll}
\hat{f}[0] & & \\
& \hat{f}[1] & 0 \\
& \ddots & \ddots \\
& & \\
& & \\
& & {[N-1]}
\end{array}\right]
$$

$\Rightarrow T_{f}$ commutes w / S. But thm \Rightarrow T_{f} is cirulant

In fact,

$$
\begin{aligned}
& \text { (diag. matices M } \\
& \text { wave hasis } \\
& \text { is N. dimil uspee }>\left\{\begin{array}{c}
\text { circulant } \\
\text { matices }
\end{array}\right\} \\
& 11 \\
& \text { filters }\left[\begin{array}{ccc}
\hat{f}[0] & & \\
& \hat{f}[1] & 0 \\
0 & \ddots & \hat{f}[N-1]
\end{array}\right]
\end{aligned}
$$

 we defile $f g$ as follows
$e_{j} * e_{k}=e_{j+k}$ extend:

$$
\begin{aligned}
& f=\sum f[j] e_{j} \quad g=\sum g[l] e_{k} \\
& f * g=\sum_{j, k} f[j] g[k] e_{j} k e_{k} \\
&\left.=\sum_{j, k} f[j] g[l] e_{j+k}=\sum_{l}\left(\sum_{j+k} f(j) g l\right)\right] e_{l} \\
&=\sum_{l} \sum_{j} f[j] g[l-j] e_{l} \\
&(k=l-j)
\end{aligned}
$$

Prop: $f_{*} y=f * y$
R

$$
\begin{aligned}
E_{j} E_{k}=E_{j+k} \quad & F^{-1}\left(E_{j} E_{k}\right) \\
& F^{-1}\left(E_{j+k}\right)
\end{aligned}
$$

