Helpful formulas

Discrete Fourier Transform
$$\hat{f}[k] = \sum_{j=0}^{N-1} \omega^{-jk} f[j]$$

Fast Fourier Transform $\hat{f}[k] = \widehat{f_{\text{even}}}[k] + \omega^{-k} \widehat{f_{\text{odd}}}[k]$
Basic Waveform Signals $E_k = \sum_{j=0}^{N-1} \omega^{jk} e_j$

1. Suppose we have a signal $f \in \ell_{\mathbb{C}}[\mathbb{Z}/4\mathbb{Z}]$. Let F_2 be the 2×2 Fourier matrix, and suppose that

$$F_2 \vec{f}_{even} = \begin{bmatrix} 2\\4 \end{bmatrix}, \ F_2 \vec{f}_{odd} = \begin{bmatrix} 6\\-2 \end{bmatrix}$$

Find $F_4\vec{f}$.

- 2. Express the complex number $2e^{i\pi/6}$ in the form a + bi where $a, b \in \mathbb{R}$.
- 3. Express 1 i in the form $re^{i\theta}$ for real numbers r, θ .
- 4. Find a 3 × 3 matrix T such that for $\vec{f} = \begin{bmatrix} 5\\3\\2 \end{bmatrix}$, we have $T\vec{y} = \overrightarrow{f * g}$.
- 5. Suppose N = 2M. Show that $e_M * E_1 = -E_1$.
- 6. Let S be the shift operator on $\ell_C[\mathbb{Z}/N\mathbb{Z}]$. Show that for a signal y, we have $S^2y = e_2 * y$, where e_2 is the standard basis vector.
- 7. Let $f = 2e_0 e_2$. Consider the linear operator T on $\ell_C[\mathbb{Z}/4\mathbb{Z}]$ defined by Ty = f * y. Exhibit a complete set of eigenvectors for T, and find thier eigenvalues.
- 8. Suppose that, when sampled at a rate of N = 8, a particular signal is given as: $f = 3e_0 2e_1 + e_4 7e_7$. What would the signal look like, in terms of the standard basis, if sampled at a frequency of N = 4?
- 9. Suppose that, when sampled at a rate of N = 8, a particular signal is given as: $f = 2E_0 2E_1 + E_4 7E_7$. What would the signal look like, in terms of the basis of waveforms, if sampled at a frequency of N = 4?