

$$
\begin{aligned}
V=\pi R^{2} H \quad R & =10 \mathrm{~cm} \\
H & =20 \mathrm{~cm} \\
V_{\text {init }}=\pi 10^{2} \cdot 20 & \approx 3 \cdot 100 \cdot 20 \\
& \approx 6,000 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\frac{d V}{d H}=\pi R^{2} \approx 300
$$

$$
H \rightarrow 21 \mathrm{~cm}
$$

$$
V_{\text {fin }}=4 \cdot 10^{2} \cdot 21 \approx 3.100 .21
$$

(Rcanst)
increar by $1 .(3.100)$

$$
+\underset{H}{+\mathrm{cm}_{\mathrm{H}} \rightarrow+300 \mathrm{vol} \cdot \mathrm{~cm}^{3}}
$$

Hcanst

$$
\pi \cdot 11^{2} \cdot 20 \approx 3 \cdot 121 \cdot 20
$$

$$
\approx 3.120 .20
$$

$$
\approx 720 \text { move }
$$

$$
\begin{aligned}
& =\pi R^{2} H+2 \pi R h H 1 \\
& +\pi h^{2} H \\
& \\
& \left.\begin{array}{c}
\text { ignoverglual) } \\
(\text { ver }
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d V}{d R}=\pi 2 R H \approx \\
& H=20 \\
& R \rightarrow 11
\end{aligned}
$$

$\frac{d V}{d R}=\pi 2 R H \approx$
$R \rightarrow R+h$

$$
V=\pi R^{2} H
$$

$$
\begin{array}{ll}
R=f(t) & H=g(t) \\
t \rightarrow t+h & R \rightarrow f(t+h) \approx f(t)+f^{\prime}(t) h
\end{array}
$$

Baric ides: $f(t+h) \approx f(t)+f^{\prime}(t) h$ "Linew approce"

$$
\text { wh: } f^{\prime}(t)=\lim _{h \rightarrow 0} \frac{f(t h h)-f(t)}{h}
$$

$$
\begin{aligned}
& f(t)=\lim _{h \rightarrow 0} \quad h \\
& f^{\prime}(t) \approx \frac{f(t+h)-f(t)}{h} \text { if his small } \\
& h f^{\prime}(t) \approx f(t+h)-f(t)
\end{aligned}
$$

$$
V=\pi R^{2} H
$$

$$
R=f(t) \quad H=g(t)
$$

$$
\frac{d V}{d t}=\pi\left(2 R \frac{d R}{d t} H+R^{2} \frac{d H}{d t}\right)
$$

$$
\begin{aligned}
& \pi\left(\frac{d}{d t}\left(R^{2}\right) H+R^{2} \frac{d}{d t} H\right) \quad R+\frac{d K}{d t} h \\
& t \rightarrow t+h \quad R \rightarrow f(t+h) \approx f(t)+f^{\prime \prime}(t) h \\
& H \longrightarrow g(t+h) \approx g(t)+g^{\prime}(t) h \\
& H+\frac{d H}{d t} h \\
& V \rightarrow \pi R^{2} H=\pi\left(R+\frac{d R}{d t} h\right)^{2}\left(H+\frac{d H}{d t} h\right) \\
& =\pi\left(R^{2}+2 R \frac{d R}{d t} h+\underset{h^{2}}{\text { mall }}\right)\left(H+\frac{d H}{d t} h\right) \\
& =\pi R^{2} H+\pi R^{2} \frac{d H}{d t} h+2 R \frac{d R}{d t} H h+H^{2} \text { stul } L \\
& \approx V+\pi\left(R^{2} \frac{d H}{d t}+2 R \frac{d R}{d t} H\right) h
\end{aligned}
$$

when latder is 8 ft now fust is it fall?

$$
\frac{d}{d t}\left(x^{2}\right)+\frac{d}{d t}\left(y^{2}\right)=\frac{d}{d t}\left(0^{2}=0\right.
$$

$$
\frac{d y}{d t}=?
$$

$$
\begin{aligned}
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \quad \frac{d y}{d t} & =-\frac{2 x}{2 y} \frac{d x}{d t} \\
& =-\frac{x}{y} \frac{d x}{d t}=-\frac{x}{4}
\end{aligned}
$$

when $y=8$,

when $y=8$

$$
\frac{d y}{d t}=-\frac{x}{8}=-\frac{6}{8}=-\frac{3}{4}
$$

how fast is θ chogir?

(6)

$$
\begin{aligned}
\sin \theta & =\frac{y}{10}=\frac{1}{10} 4 \\
\cos \theta \frac{d \theta}{d t} & =\frac{1}{10} \frac{d y}{d t}=\frac{1}{10}\left(-\frac{3}{4}\right) \\
\left(\frac{6}{10}\right) \frac{d \theta}{d t} & =\frac{1}{10}\left(-\frac{3}{4}\right) \quad \frac{d \theta}{d t}=-\frac{1}{8}
\end{aligned}
$$

in I sec, ladder has fallen $\approx 9_{\text {in }} \approx 1 \mathrm{ft}$ now $\approx 7 \mathrm{ft}$ Ladler has moved I ft form rall now $\approx 7 f$. \angle of ladder after 1 sec?

$$
m \pi \operatorname{rir} \mid x c 7
$$

\angle ot langur

$$
\theta=\frac{\pi}{4} \text { of l } \mathrm{xc} \text { ? }
$$

initial $x \approx \frac{\pi}{4}+\frac{1}{8}$

B
$i^{12 m i l u r}$

20 mi
how fast is distance betray shies cha γ ?

Assign variable raves to

- thing your ant to fund rates of clue of $\frac{d h}{d t}$ want - c know the know $\frac{d a}{d t}=7 \frac{d l}{d t}=12$

Find equ to relate them

$$
a^{2}+b^{2}=h^{2}
$$

when

$$
\begin{aligned}
& a=30\{ \\
& b=20
\end{aligned}
$$

take $\frac{d}{d t}$'s. $\quad 2 a \frac{d a}{d t}+2 b \frac{d b}{d t}=2 h \frac{d h}{d t}$
salve $\frac{d h}{d t}=\frac{a \frac{d a}{d t}+b \frac{d b}{d t}}{h}=\frac{30(7)+20(12)}{\sqrt{30^{2}+20^{2}}}$

