

Also could ask:
when is wene as lage as possithle?
W/lair $\Rightarrow \begin{aligned} & \text { how tast is air escongy in ais escupy taskest? }\end{aligned}$
Could have mone ratersty dermptons. f motun'
ex: $\frac{d y}{d t}=y-1$ if $y=1$ (urtreal \& notmay.

$$
\begin{gathered}
y<1> \\
\frac{d y}{a t}=(\text { lessthmil })-1 \\
\text { sallo. }
\end{gathered}
$$

Real world "related rates"
Papulaton dymamics
More rabbits $=$ fasto grong rabilit papulatan.

$$
R=\# \text { rabits } \quad \frac{d R}{d t}=\text { rabhit grow th rate. }
$$

$$
\begin{aligned}
& R=\# \text { habits } \\
& \frac{d R}{d t}=\text { rabbit grow th rate. } \\
& \text { example } \frac{d R}{d t}=R \text { or } \frac{d R}{d t}=2 R \\
& \frac{d R}{d t}=R^{2} \\
& F=\# \text { foxes }
\end{aligned}
$$

move rabbits = faster rabbit growth
wore foxes $=$ move rabbit mortality.

$$
\begin{aligned}
& \frac{d R}{d t}=2 R-F^{2} \quad \operatorname{examph} \\
& \frac{d E}{d t}=R F-F=(R-E) F \\
& R-F ?
\end{aligned}
$$

move rabbits " fustor for growth
mare foxes "?
what's max numb. frollits pap will have? when

Qi How to optimize / find min s, max values $?$
Basic idea: Notron if local minima d maxima - lomax

Def a numbs c is a local min for $f(x)$ if for some internal (a, b) contang c, we have $f(x) \geqslant f(c)$ fo all x in (a, b).
Def Similarly ca local max if ... -

$$
-f(x) \leqslant f(c) \text { all } x \operatorname{m} \quad(a, \bar{b})
$$

Non-extrema: (increag/decreain)
Def $f(x)$ is increasing on an intros (a, b) if fo any x_{1}, x_{2} in (a, b) with $x_{1}<x_{2}$ we have

$$
f\left(x_{1}\right)<f\left(x_{2}\right)
$$

Def $f(x)$ is clecreaing on an intros (a, b) if fo any x_{1}, x_{2} in (a, b) with $x_{1}<x_{2}$ we have

$$
f\left(x_{1}\right)>f\left(x_{2}\right)
$$

$$
f\left(x_{1}\right)>f\left(x_{2}\right)
$$

Def $f(x)$ is nondecreang on an intros (a, b) if for any x_{1}, x_{2} in (a, b) with $x_{1}<x_{2}$ we have

$$
f\left(x_{1}\right) \leqslant f\left(x_{2}\right)
$$

Def $f(x)$ is noninareang on an intros (a, b) if for any x_{1}, x_{2} in (a, b) with $x_{1}<x_{2}$ we have

$$
f\left(x_{1}\right) \geqslant f\left(x_{2}\right)
$$

Main Fact (will explain fully (after)

- If $f(x)$ is a function 's $f^{\prime}(c)>0$ then $f(x)$ is increag if $f(x)$ is a same inf oral around c (and so, c is not a local min ar max) $f^{\prime}(x)<0$ - - decoy

Conclusion is: Only passible local wins ar max's ocosr 1. wither $f^{\prime}(x)>0$ nor when $f^{\prime}(x)<0$
only when neither $f^{\prime}(x)>0$ nor when $f^{\prime}(x)-0$
Said backwards? local min/max can only occurs at points where either

- $f^{\prime}(x)=0$ of
- $f^{\prime}(x)$ does not exist

Sa if $f^{\prime}(c)=0$ or $f^{\prime}(c)$ dane re say that cis a (c in interior of domain $(f(x)$) critical point
example: Find local extrema. $f f(x)=x^{2}-5 x-1$
Step 1. locate crit pts:

$$
\begin{aligned}
& \begin{array}{l}
\text { locate chi } f^{\prime}(x)=0 \\
f^{\prime}(x)=2 x-5
\end{array} \quad \begin{array}{c}
\text { wi } f^{\prime}(x) \text { net detand? } \\
\text { defred ewsyubure. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=0=2 x-5 \Rightarrow x=\frac{5}{2} \text { cntpt } \\
& \text { when is } f^{\prime}(x)>0 ? ~ 2 x-5>0 \\
& \text { when is } f^{\prime}(x)<0 \text { ? } \\
& \begin{array}{c}
2 x>5 \\
x>5 / 2
\end{array} \\
& 2 x-5<0 \\
& \text { dacresy } \rightarrow \begin{aligned}
& \\
& 2 x<5 \\
& x<5 / 2
\end{aligned}
\end{aligned}
$$

so must beamin!
ex:

$$
\begin{aligned}
& f(x)=x^{3} \\
& f^{\prime}(x)=3 x^{2}
\end{aligned}
$$

$$
f(x)=(\sqrt[3]{x})^{2}
$$

alworys \rightarrow alwas detrued pas it $x \neq 0$

$$
\begin{aligned}
& x>\text { detred } \\
& f^{\prime}(x)=0=3 x^{2} \Rightarrow x=0 \text { cnit.pl. }
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{2 / 3} \\
& f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}=\frac{2}{3} \frac{1}{\sqrt[3]{x}}
\end{aligned}
$$

$f^{\prime}(x)$ not effed a $x=0$ chitpt

$f^{\prime}(x)=6$ rear

$$
f^{\prime}(x)=\frac{2}{3} \frac{1}{\sqrt[3]{x}} \geq 0 \text { if } x>0
$$

$$
\begin{aligned}
& f(x)=\frac{1}{x}=x^{-1} \\
& f^{\prime}(x)=-x^{-2}=-\frac{1}{x^{2}}
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{2}{3} \frac{1}{3 \sqrt{x}}<0 \text { if } x<0
$$

whu is $f^{\prime}(x)$ rot dtad $C x=0$. nat ant pt. (not indamen)

