How to do well in the class

- make sure you understand every thing.
- resolve all uncertainties \longrightarrow email
\longrightarrow office hours
- socesstull completion it mehwark: email instr actor webwork foudrstandy. To ask qustons in class.

Visual intrpnetaton of contivity:

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

I can draw graph" without lift y your pen"

[Notatro

$$
f(x)= \begin{cases}x & \text { it } x \neq 0 \\ 7 & \text { if } x=0\end{cases}
$$

for ahove example

$$
\lim _{x \rightarrow 0} f(x)=0 \neq f(0)=7
$$

how. $\quad \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x$

$$
f(x)=\frac{x^{2}}{x}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=0 \\
& \frac{x^{2}}{x}=x \\
& r \text { if } x \neq 0 .
\end{aligned}
$$

My favorite discontivars functon
fireed mass ${ }^{\text {o }}$ water at const. pressure addy enveg (heat) temeratue us evergy

Cous tron: steam
exiry

$$
\begin{array}{ll}
\quad \lim _{x \rightarrow 0} f(x)=\text { doesu't exiot. } & f(x)= \begin{cases}x+1 & \text { if } x>0 \\
x-1 & \text { if } x \leq 0\end{cases} \\
\lim _{x \rightarrow 0^{+}} f(x)=1 \\
\lim _{x \rightarrow 0^{-}} f(x)=-1
\end{array}
$$

Definitron $\lim _{x \rightarrow a^{+}} f(x)=L$ means that we can mata $f(x)$ as clase as we want to L Ly makg x closeto, but strictly greato than a.
$\lim _{x \rightarrow a^{-}} f(x)=L$ means that we can maka $f(x)$ as clase as me want to L by maky x closeto, but strictly less than a.

1. $\lim _{x \rightarrow 11} f(x) \quad 2-\lim _{x \rightarrow 1^{-}} f(x) \quad$ 3. $\lim _{x \rightarrow 2^{-}} f(x) \quad$ "0 $\lim _{x \rightarrow 3} f(x)=1$

$$
\text { 5. } \lim _{x \rightarrow 5^{+}} f(x)=0
$$

6. Domain of $f(x)$
7. Where is $f(x)$
$(-\infty, 3) \cup(3, \infty) \quad$ (iatreal natatuo) $\begin{gathered}\text { contivinues)? } \\ (-\infty, 1) \cup(1,3) \cup(3,5) \cup\end{gathered}$ $(5, \infty)$
not cant: $\{1,3,5\}$

Most importent contivity fect:
lutor medrate ralle theoum

$$
\text { if } a<b \leqslant f(a)<f(b)
$$ then for any $f(a)<M<f(b)$ The is save $a<c<b$ w/

$$
f(c)=M
$$

Begings it deviraties/rater of chage.
Stertz parti. Aurage sales of chage.

Gen a functor $f(x)$, ask how quickly an ane vales change w/ respect to x between $x=a, x=b$?

ex: $f(x)=x^{2}$ ar rate of chat heteen $1!2$

$$
\frac{f(2)-f(1)}{2-1}=\frac{4-1}{1}=3
$$

what it re want to knew slope at $x=1$
closer arg. rate folyghetreen 15.1.1

$$
\frac{f(1.1)-f(1)}{1.1-1}=\frac{1.21-1}{.1}=\frac{.21}{.1}=2.1
$$

between $1!1.001$
between $1 \& 1+h \quad h$ small

$$
\frac{f(1+h)-f(1)}{1+h-1}=\frac{1+2 h+h^{2}-1}{h}
$$

$$
\begin{aligned}
1+h-1 & \frac{h}{h}=2+h
\end{aligned}
$$

as 4 gats smaller, this gets doe $t 2$

$$
\lim _{h \rightarrow 0} 2+h=2 \quad \text { slope at } x=1 \text { is } 2
$$

Def the arrage rate of change of $f(x)$ betren $a!b$ is

$$
\frac{f(b)-f(a)}{b-a}
$$

Def the instantaneous rate of chape of $f(x)$ at $x=a$

$$
\begin{aligned}
& \text { the instantaneous rate ot chape of } f(x) \text { ar } x=4 \\
& \text { is } \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{a+h-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
\end{aligned}
$$

this is also called "the denvatre of $f(x)$ at $x=a$ "
ex: inst. rate it che of $f(x)=1 / x$ at $x=2$.

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{2+h}-\frac{1}{2}}{h}=\lim _{h \rightarrow 0} \frac{\left(\frac{2}{2(2+h)}-\frac{2+h}{2(2+h)}\right)}{h}
$$

$$
\begin{gathered}
=\lim _{n \rightarrow 0} \frac{n}{2-(2+h)} \\
2(2+h) h
\end{gathered} \lim _{n \rightarrow 0} \frac{-h}{2(2+h) h}, ~=\lim _{h \rightarrow 0} \frac{-1}{2(2+h)}=-\frac{1}{4} .
$$

