Slope of secant line for $f(x)$ between $x=a, x=b$

slope: $\frac{f(b)-f(a)}{b-a}$ =arrage rate of change
$=$ avenge rate of change of $f(x)$ betren $x=a \geqslant x=b$
Slope of tanguit live to $f(x)$ at $x=a=$
instantaneous rate of change of $f(x)$ at $x=9=$ the derisatre of $f(x)$ at $x=a=$

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a) & =\left.\frac{d f}{d x}\right|_{x=a} \\
y=f(x) & =\left.\frac{d y}{d x}\right|_{x=9}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad & \lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{x}\right) \cdot\left(\frac{2}{2}\right)=\lim _{x \rightarrow 0} 2 \frac{\sin 2 x}{2 x} \\
& =2 \lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \quad \text { as } x \text { gets clocto } 0
\end{aligned}
$$

So does $2 x$!

$$
=2 \lim _{u \rightarrow 0} \frac{\sin u}{u} \text { declare } u=2 x
$$

$$
\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x}\right)\left(\frac{1+\cos x}{1+\cos x}\right)
$$

