(Sectron 4)

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h}=1
$$

$$
\sin (A+B)=\sin A \cos B+\sin B \cos A
$$

(nemembr: $e^{i \theta}=\cos \theta+i \sin \theta$)
Edes fomila

$$
\begin{aligned}
& \frac{d}{d x} \sin x=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x \cos h+\sin h \cos x-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x \cosh -\sin x}{h}+\frac{\sinh \cos x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x \cosh -\sin x}{h}+\lim _{h \rightarrow 0} \frac{\sinh \cos x}{h} \\
& \begin{array}{l}
=\sin x \underbrace{}_{h \rightarrow 0} \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\cos x \lim _{h \rightarrow 0} \frac{\sin h}{h}=\cos x \\
\frac{\cos h-1}{h}=\lim _{h \rightarrow 0}\left(\frac{\cos h-1}{h}\right)\left(\frac{\cos h+1}{\cos h+1}\right) \quad \begin{array}{l}
\cos ^{2} h+\sin ^{2} h=1 \\
\cos ^{2} h-1=-\sin ^{2} h
\end{array}
\end{array} \\
& =\lim _{h \rightarrow 0} \frac{\cos ^{2} h-1}{h(\cos h+1)}=\lim _{h \rightarrow 0} \frac{-\sin ^{2} h}{h(\cos h+1)} \\
& \lim _{h \rightarrow 0}\left(\frac{\sin h}{h}\right)(\frac{-\sinh }{\cos h+1)}=\underbrace{\lim _{h \rightarrow 0}\left(\frac{\sin h}{h}\right)}_{1} \underbrace{\lim _{h \rightarrow 0} \frac{-\sin h}{(\cos h+1)}}_{(p \operatorname{cog} \operatorname{in}) \frac{-0}{(1+1)}}=0
\end{aligned}
$$

Soi $\frac{d}{d x} \sin x=\cos x$
similarly could do

$$
\begin{aligned}
& \frac{d}{d x} \cos x=-\sin x \quad \frac{d}{d x} \sin x=\cos x \\
& \frac{d \operatorname{dro} \text { nle }}{\frac{d}{d x} \tan x=\frac{d}{d x} \frac{\sin x}{\cos x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x} \quad \text { (Theorem 4.1.5) } \\
& \frac{d}{d x} \sec x=\frac{d}{d x} \frac{1}{\cos x} \quad \frac{d}{d x} \csc x=\frac{d}{d x} \frac{1}{\sin x} \quad \frac{d}{d x} \cot x \\
& \left(\frac{\sin x}{\left.\cos ^{2} x\right)} \quad-\csc x \cot x\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x}\left(3 x^{2}-\sin x\right)(1+\cos x) \\
& =\left(3 x^{2}-\sin x\right)^{\prime}(1+\cos x)+\left(3 x^{2}-\sin x\right)(1+\cos x)^{\prime} \\
& =(3 \cdot 2 x-\cos x)(1+\cos x)+\left(3 x^{2}-\sin x\right)(-\sin x) \\
& f(x)=e^{x} \quad e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x} \\
& \begin{array}{l}
a^{x+y}=a^{x} a^{y} \quad \\
\frac{d}{d x} a^{x}=\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h}=\lim _{h \rightarrow 0} \frac{a^{x} a^{h}-a^{x}}{h} \\
=a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
\end{array} .
\end{aligned}
$$

turns out, if $a=e$ then $\lim _{n \rightarrow 0} \frac{e^{h}-1}{h}=1$

$$
\Rightarrow \frac{d}{d x} e^{x}=e^{x}(1)=e^{x}
$$

Ex:

$$
\begin{aligned}
& \Rightarrow d x \\
& \frac{d}{d x} e^{x} \sin x=\left(e^{x}\right)^{\prime} \sin x+e^{x}(\sin x)^{\prime} \\
&=e^{x} \sin x+e^{x} \cos x
\end{aligned}
$$

$$
=e^{x}(\sin x+\cos x)
$$

Cham Rule

pouring at rite f $30 \mathrm{~cm}^{3} / \mathrm{sec}$ how fast is
water ring?
wont height/ tie $\frac{d h}{d t}$

$$
\frac{d V}{d t} \frac{\text { volume pore }}{}
$$

$$
V=\pi r^{2} h=100 \pi h \quad \frac{d h}{d V}
$$

$h=$ functor of V
(out of time \cap)

