MATH 2250 PRACTICE SHEET FOR FINAL EXAM

1. Use the definition of the derivative to find the derivative of the function

$$
f(x)=x^{2}+\frac{1}{x}
$$

2. Find an equation for the tangent line to the graph of the function

$$
f(x)=3 x+\ln x
$$

at $x=1$.
Use this information to approximate $f(1.2)$.
3. Find the derivative of the function

$$
f(x)=\frac{x e^{x}-1}{\ln x}=\frac{(\ln x)\left(x e^{x}+e^{x}\right)-\left(x e^{x}-1\right) \frac{1}{x}}{(\ln x)^{2}}
$$

4. Solve for $\frac{d x}{d t}$ given the equation

$$
\ln (x+y)=e^{x}-t
$$

5. Compute the following limit

$$
\lim _{x \rightarrow 0} \frac{\sin x^{2}}{\cos x-1}
$$

6. Compute the following limit

$$
\lim _{x \rightarrow 3} \frac{e^{x}-e^{3}}{x-3}
$$

7. Compute the following limit

$$
\lim _{x \rightarrow 3} \frac{e^{x}-e^{3}}{x}
$$

8. Find the absolute minimum and maximum values of the function $f(x)=x+\ln x$ on the interval $[1, e]$.
9. Does the following function have an absolute maximum or absolute minimum value on the interval $\left[\frac{1}{2}, \infty\right)$?

$$
f(x)=x-7 \ln x
$$

10. Consider the function $f(x)=\frac{3}{1+x^{3}}$, and suppose that $F(x)$ is an antiderivative for $f(x)$ with $F(0)=0$.

Explain why $F(x)=\int_{0}^{x} \frac{3}{1+t^{3}} d t$
11. Two people start walking from the same point, person A walking due north and person B walking due east. After some time, if person A is 40 feet from the starting point and walking at 3 feet per second, and if person B is 30 feet from the starting point and walking at 5 feet per second, how fast is the distance between the two people changing?
12. Compute

$$
\int e^{x} \cos e^{x} d x
$$

13. Compute

$$
\int(\sin x)^{7}(\cos x) d x
$$

14. Compute

$$
\int_{0}^{1} x \sqrt{1-x^{2}} d x
$$

15. Compute

$$
\int_{0}^{1} \sqrt{1-x^{2}} d x
$$

hint: this is a trick question
16. Compute

$$
\int \tan x d x
$$

(you shouldn't need to memorize this formula - use u-substitution!)
17. Find two number a and b such that $3 a+4 b=9$ and such that $a b$ is as large as possible.
18. Find all critical values of the following functions $x, x^{-1}, x^{2}, x^{3}, x^{2 / 3}, x^{-2 / 3}, x+\ln x$.

Which of these critical values represent local minimums and which represent local maximums?
19. Use Riemann Sums with 3 rectangles and using left endpoints to approximate the value of the integral:

$$
\int_{0}^{1} \frac{1}{1+x^{3}} d x
$$

20. Use Riemann Sums and limits to find the value of the definite integral:

$$
\int_{2}^{3}(3 x+2) d x
$$

21. A company would like to design a box (bottom, top and four sides), with square base with a volume of exactly 1000 cubic centimeters. How tall should the box be made so that it uses the least amount of material (surface area)?
22. Suppose that $f(x)$ is defined on $[-3,3]$ which satisfies the following properties:

- $f(x)$ is increasing on the interval $[-3,0]$,
- $f(x)$ is decreasing on $[0,3]$,
- $f(x)$ is concave down on $[-3,1]$, and
- $f(x)$ is concave up on [1,3].

Use this information to sketch the graph of $f(x)$.
23. Sketch a graph of a function which is increasing everywhere, concave down for $x<0$ and concave up for $x>0$.
on

$$
\begin{gathered}
\ln (x+y)=e^{x}-t \\
\perp \frac{d}{d t} \\
\left(\frac{1}{x+y}\right)\left(\frac{d y}{d t}+\frac{d y}{d t}\right)=e^{x} \frac{d x}{d t}-1 \\
\left(\frac{1}{x+y}\right) \frac{d x}{d t}+\left(\frac{1}{x+y}\right) \frac{d y}{d t}=e^{x} \frac{d x}{d t}-1 \\
\left(\frac{1}{x+y}\right) \frac{d y}{d t}-e^{x} \frac{d x}{d t}=-1-\frac{1}{x+y} \\
\frac{d y}{d t}\left[\frac{1}{x+y}-e^{x}\right)=-1-\frac{1}{x+y} \\
\frac{d x}{d t}=\frac{\left(-1-\frac{1}{x+y}\right)}{\left(\frac{1}{x+y}-e^{x}\right)}
\end{gathered}
$$

Find two number a and b such that $3 a+4 b=9$ and such that $a b$ is as large as possible.

$$
\begin{array}{ll}
f=a b & b=\frac{q-3 a}{4} \\
f(a)=a\left(\frac{9-3 q}{4}\right) &
\end{array}
$$

$x^{2}+y^{2}+z^{2}+w^{2} \quad 4$ squares thearem
x, y intgers

$$
x^{2}+3 y^{2}+4 z^{3}+7 v^{2}
$$

$$
2 x^{2}+2 y^{2}+2 x^{2}+2 y^{2}
$$

$$
9 x^{2}-13 y^{2}+2 z^{2}+7 w^{2}=32 / 5
$$

$q \quad 17$
8

$$
1+2^{3}+2^{7}+2^{9}+2^{13}+2^{17}
$$

space tistates
Sevolve / pre.

$$
\begin{array}{r}
\left.3 \frac{1}{2} x^{2}+2 x\right]_{2}^{3}=\frac{3}{2} 3^{2}+2(3)-\frac{3}{2} 2^{2}-2 \cdot 2 \\
=\frac{27}{2}+6-6-4 \\
\frac{27}{2}-\frac{8}{2}=\frac{19}{2}
\end{array}
$$

Use Riemann Sums and limits to find the value of the definite integral:
$q=2 \quad b=3 \quad n=\#$ rectory les

$$
\Delta x=\frac{b-a}{n}=\frac{1}{n}
$$

Area, $\Delta x f\left(x_{1}^{*}\right)+\Delta f\left(x_{2}^{1}\right)+\cdots$

$$
\begin{aligned}
& =6+3 i / n+2 \\
& =8+3 i / n
\end{aligned}
$$

$$
\begin{array}{rl}
=\sum_{i=1}^{n} \Delta x & f\left(x_{i}^{*}\right) \\
& =\sum_{i=1}^{n} \frac{1}{n}(8+3 i / n) \\
& =\frac{1}{n} \sum_{i=1}^{n} 8+3 i / n=\frac{1}{n} \sum_{i=1}^{n} 8+\frac{1}{n} \sum \frac{3 i}{n} \\
& =\frac{8 n}{n}+\frac{1}{n} \frac{3}{n} \sum_{\underbrace{n}_{i=1} i}^{n}(n+1)
\end{array}
$$

$$
\begin{aligned}
& =8+\frac{3}{n^{2}}\left(\frac{n(n+1)}{2}\right) \\
& =8+\frac{3}{2} \frac{(n+1)}{n} \\
& =8+\frac{3}{2}\left(1+\frac{1}{n}\right) \\
& n \rightarrow \infty \Rightarrow 8+\frac{3}{2}(1) \\
& =\frac{19}{2}
\end{aligned}
$$

