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1. LECTURE (1/9): WEDDERBURN-ARTIN THEORY

Preliminaries. We will make a few conventions:
(1) Ring will always be associative and unital, but not necessarily commutative;
(2) Ring homomorphisms will be unital (i.e., f (1) = 1) and the zero ring is allowed;
(3) Modules will be left or right and for notations sake we will denote a left R-module

M as RM and a right S-module N as NS.

Definition 1.1. Given rings R, S an R´ S bi-module M is an Ableian group both with left
R-module and right S-module structure satisfying:

r(ms) = (rm)s @ r P R, s P S, m P M.

Note that we will denote an R´ S bi-module P by RPS.

Structure Theory. Let R be a ring.

Definition 1.2. A left R-module P is simple if it has no proper non-zero sub-modules.

Definition 1.3. If P is a left R-module and X Ă P, then

annR(x) = tr P R : rx = 0@ x P Xu .

Remark 1.4. annR(x) is always a left ideal and is 2-sided if X = P.

Definition 1.5. We will denote an ideal I of R by I ď R. A left ideal will be denoted by
I ď` R and similarly, I ďr R for a right ideal. An ideal I ď R is said to be left primitive if
it is of the form I = annR(P), where P is simple.

Proposition 1.6. Suppose P is a non-zero right R-module, then the following are equivalent:
(1) P is simple;
(2) mR = P for all m P Pz t0u;
(3) P = R/I for some I ďr R maximal.

Proof. (1) ñ (2). Since mR is a non-zero ideal and P is simple, mR = P. (2) ñ (3).
Consider the map R�P defined by r ÞÑ mr. By the first isomorphism theorem, we have
that R/ ker – P. Furthermore, ker has to be maximal, else R/ ker is not simple. (3)ñ (1).
This is a direct consequence of the Lattice Isomorphism theorem. �

Definition 1.7. A left R-module P is semi-simple if

P –
n
à

i=1
Pi where each Pi is simple.

Proposition 1.8. Let A be an algebra over a field F and M a semi-simple left A-module which is
finite dimensional as a F-vector space. If P Ă M is a sub-module, then

(1) P is semi-simple;
(2) M/P is semi-simple;
(3) there exists P1 Ă M such that M – P‘ PK.

Remark 1.9. If F is a field, then an F-algebra is a ring A together with a vector space
structure such that for every λ P F, a, b P A, we have

(λa)b = λ(ab) = a(λb),

hence F ãÑ Z(A).
3



Proof. (1). Let P Ă N Ă M be sub-modules and write M = N ‘ N1 = P ‘ P1 for some
N1 and P1. We need to find Q such that N = P‘Q. Let Q = P1 X N. This is a sub-module
of N so we need to show that N = P + Q and PXQ = 0. Let n P N, then n P M so we can
write n = a + b for some uniquely determined a P P, b P P1. Since P Ă N, we have that
b = n´ a P N, and hence b P Q. Thus, we have n P P + Q and consequently, N = P + Q.
To show that other claim, let n P P X Q, then n P P1 as well. By choice of P and P1, if
n P P and n P P1, then n = 0, and hence PXQ = 0.

(2). To show that M/P is semi-simple, choose Q ď M/P that is that maximal semi-
simple sub-module. Suppose that Q ‰ M/P. ♠♠♠Jackson: Ask Bastian about proof. �

Definition 1.10. Let R be a ring. Define

Jr(R) =
č

all maximal right ideals

J`(R) =
č

all maximal left ideals .

Remark 1.11. Note that annihilators of elements in a simple R-module are the same as
maximal right ideals in R. Hence we have that

Jr(R) =
č

all annihilators of simple R-modules

=
č

MPModR
M simple

annR(M)

Thus, we have that Jr(R) ď R.

Lemma 1.12. Suppose that A is a finite dimensional F-algebra, then AA is semi-simple if and
only if Jr(A) = 0.

Proof. (ñ). First, we write AA =
Àn

j=1 Pi where Pi are simple. Let pPj =
À

j‰i Pj. We can

easily see that pPj is a maximal right ideal. By Definition 1.10, we have that

Jr(A) Ă
n
č

j=1

pPj = 0.

(ð). Suppose that Jr(A) = 0. Since A is a finite dimensional vector space over F, there
exists a finite collection of maximal ideals Ii such that

Ş

Ii = 0. By Proposition 1.6, we
have that for each i, A/Ii is simple, hence

À

i A/Ii is semi-simple by definition. Since
Ş

Ii = 0, we have that the map
A ÝÑ

à

i
A/Ii

is injective, hence we can consider A as a sub-module of a semi-simple module. We have
our desired result by Proposition 1.8. �

Definition 1.13. An element r P R is left-invertible if there exists s P R such that sr = 1
and is right-invertible if rs = 1.

Lemma 1.14. Let A be a finite dimensional algebra over F. An element a P A is right invertible
if and only if a is left invertible.
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Proof. Pick a P A. Consider the linear transformation of F-vector spaces

φ : A ÝÑ A
b ÞÝÑ ab

If a is right invertible, then φ is surjective. Indeed, since if ax = 1, then for y P A,
φ(xy) = axy = y. If φ is bijective, then det(T) ‰ 0, where T is the matrix associated to φ
for some choice of basis. Let

χT(t) = tn + cn´1tn´1 + ¨ ¨ ¨+ c0

be the characteristic polynomial of T, so c0 = ˘det(T). By the Cayley-Hamilton theorem,
we have that χT(T) = 0, which implies that

(an´1 + cn´1an´2 + ¨ ¨ ¨+ c1)a
´c0

= 1.

So we have found a left inverse to a that is also a right inverse due to commutativity. �

Lemma 1.15. Let R be a ring and r, s, t P R such that sr = 1 = rt, then s = t.

Definition 1.16. Let R be a ring and r P R. We say that r is left quasi-regular if 1´ r is left
invertible. We will say that r is quasi-regular if 1´ r is invertible.

Lemma 1.17. Let I ďr R such that all elements of I are right quasi-regular. Then all elements of
I are quasi-regular.

Proof. Let x P I. We want to show that 1 ´ x has a left inverse. We know that there
exists an element s P R such that (1 ´ x)s = 1. Let y = 1 ´ s and s = 1 ´ y. Then
(1´ x)(1´ y) = 1 = 1´ x ´ y + xy, which implies that xy ´ x ´ y = 0, so y = xy ´ x.
Since x P I, y must also be in I. By assumption, y is right quasi-regular (1´ y is right
invertible) but 1´ y is also left invertible with inverse 1´ x. Then (1´ y)(1´ x) = 1, so
(1´ x) is left invertible, and thus x is quasi-regular. �

Lemma 1.18. Let x P Jr(R), then x is quasi-regular.

Proof. By Lemma 1.17, it is enough to show that x is right quasi-regular for all x P Jr(R).
If x P Jr(R), then x is an element of all maximal ideals of R. Hence 1´ x is not an element
of any maximal ideal in R, so (1 ´ x)R = R. Thus there exists some s P R such that
(1´ x)s = 1. �

Lemma 1.19. Suppose that I ď R such that all elements are quasi-regular. Then I Ă Jr(R) and
I Ă J`(R).

Proof. Suppose that K is a maximal right ideal. To show that K Ą I, consider K + I. If
I Ę K, then K + I = R, so K + x = 1 for k P K and x P I. This tells us that K = 1´ x and
since 1´ x is invertible, we have that K is invertible, but this contradicts our assumption
that K is a maximal right ideal; therefore, I Ă K. �

Corollary 1.20. Jr(R) is equal to the unique maximal ideal with respect to the property that each
of its elements is quasi-regular. Moreover, we have that Jr(R) = J`(R), so we will denote this
ideal by J(R).

Definition 1.21. A ring R is called semi-primitive if J(R) = 0.
5



Theorem 1.22 (Schur’s Lemma). Let P be a simple right R-module and D = EndR(PR), then
D is a division ring.

Remark 1.23. D acts on P on the left, and P has a natural D ´ R bi-modules structure.
Indeed, for f P EndR(PR), we have

f (pr) = f (p)r.

Proof. Suppose that f P Dz t0u. We want to show that f is invertible. Consider ker( f ) and
im( f ), which are sub-modules of P as right R-modules. Since P ‰ 0, ker( f ) ‰ P, which
implies that ker( f ) = 0 since P is simple. Hence im( f ) ‰ 0, so im( f ) = P by the same
logic. Thus f is a bijection. Let f´1 denote the inverse map of f . It is easily verified that
f´1 is also R-linear, hence f´1 P D. Moreover, D is a division ring. �

Endomorphisms of Semi-simple Modules. Let M, N be semi-simple R-modules, so we
can represent them as a direct sum of simple R-modules Mi, resp. Ni. If f : M Ñ N is a
right R-modules homomorphism, then f j = f|Mj

can be represented as a tuple

( f1,j, f2,j, . . . , fn, j)

where fi,j : Mj ÝÑ Ni. From this notation, it is clear that we can represent f as a nˆm
matrix

f =

 f1,1 ¨ ¨ ¨ f1,m
...

...
...

fn,1 ¨ ¨ ¨ fn,m


i.e.,

HomR(MR, NR) =

HomR(M1, N1) ¨ ¨ ¨ HomR(M1, Nm)
...

...
...

HomR(Mn, N1) ¨ ¨ ¨ HomR(Mn, Nm)


with standard matrix multiplication by composition.

Theorem 1.24 (Artin- Wedderburn). Let A be a finite dimensional algebra over a field and
J(A) = 0. Then we may write A =

Àn
i=1 Pdi

i with Pi mutually non-isomorphic and A –

(Mdi(Di))
ˆn where Di = End(Pi) a division ring.

Proof. Note that A – EndA(AA) and J(A) = 0 implies that AA = Pdi
i by Lemma 1.12.

Schur’s Lemma (Lemma 1.22) says that Di = EndA((Pi)A) is a division algebra. We can
write

EndA(AA) =

HomR(Pd1
1 , Pd1

1 ) ¨ ¨ ¨ HomR(Pd1
1 , Pdn

n )
...

...
...

HomR(Pdn
n , Pd1

1 ) ¨ ¨ ¨ HomR(Pdn
n , Pdn

n )


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We can decompose this further by noting that

HomR(Pdi
i , P

dj
j ) = dj

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

HomR(Pi, Pj) ¨ ¨ ¨ HomR(Pi, Pj)
...

...
...

HomR(Pi, Pj) ¨ ¨ ¨ HomR(Pi, Pj)


loooooooooooooooooooooooomoooooooooooooooooooooooon

di

Since Pi is simple, Hom(Pi, Pj) = 0 unless i = j. Note that in this case we have that
Hom(Pi, Pi) = End(Pi) = Di, so

EndA(AA) =


Md1(D1)

Md2(D2)
. . .

Mdn(Dn)


therefore, EndA(AA) = Md1(D1)ˆ ¨ ¨ ¨ ˆMdn(Dn). �

Corollary 1.25. If A is a finite dimensional, simple F algebra, then A – Mn(D) where D is a
division algebra over F and Z(A) = Z(D).

Proof. Since J(A) ď A and 1 R J(A), we have that J(A) = 0 since A simple. By Theorem
??, we have that A = (Mdi(Di))

ˆn. Since each factor Mdi(Di) is an ideal and A is simple,
we have that n = 1, and hence we have our desired decomposition.

For the second statement, using matrix representations for Z(A) and Z(D), we can con-
struct an isomorphism Z(D) ÝÑ Z(A) sending d ÞÝÑ d ¨ In. �

Definition 1.26. An F-algebra A is called a central simple algebra over F (CSA/F) if A is
simple and Z(A) = F.

2. LECTURE (1/16): TENSORS AND CENTRALIZERS

Today we will discuss tensors and centralizers.

Tensor Products. Let R, S, T be rings. Let RMS, SNT bi-module, and a map to RPT

φ : Mˆ N ÝÑ P

We say that φ is R´ S´ T linear if
(1) for all n P N, m ÞÑ φ(m, n) is left R-module homomorphism;
(2) for all m P N, n ÞÑ φ(m, n) is right T-module homomorphism;
(3) φ(ns, m) = φ(n, sm).

Definition 2.1. Given RMS, SNT, we say that a bi-module RPT together with a R ´ S ´ T
linear map M ˆ N ÝÑ P is a tensor product of M and N over S is for all M ˆ N ÝÑ Q

7



R´ S´ T linear there exists a unique factorization:

Mˆ N Q

P

D!

Definition 2.2. We define M bS N to be the quotient of the free Abelian group generated
by Mˆ N by the subgroup generated by the relations

(m, n1 + n2) = (m, n1) + (m, n2)

(m1 + m2, n) = (m1, n) + (m2, n)
(ms, n) = (n, sn)

In the case where R commutative, left modules have right module structure and vice
versa. In this way, MR bR RN has an R-modules structure; so when R commutative, we
will refer to a R´ R´ R linear map as R bi-linear. We have the notation that the ordered
pair (m, n) is the equivalence class mb n, which are called simple tensors. We note that
elements in MbR N are linear combinations of simple tensors.

In the case of tensors over fields, a lot of the structure is much more transparent and
simpler.

Proposition 2.3. If V, W are vector space over a field F with bases tviu ,
 

wj
(

, then V bW is a
vector space with basis given by

 

vi bwj
(

.

Proof. Clearly, this basis spans. To see independence, define a function φk,l : V ˆW ÝÑ F
which maps (

ř

αivi,
ř

β jwj) ÞÝÑ αkβl. This map is bi-linear, and the induced map on
tensors is a group homomorphism. Hence we have linear independence. �

If V/F is some vector space L/F field extension, then LbF V is an L-vector space with
basis t1b viuwhere tviu is a basis for V. Similarly, given a linear transformation T : V ÝÑ

W, then
Lb T : LbV ÝÑ LbW

where Lb T(xb v) ÞÑ xb T(v). If we identify the bases of V and LbV, we see that T and
Lb T have the “same” matrix. Thus

Lb (ker T) = ker(Lb T),

and similarly, for cokernel, image, etc.

Tensor Products of Algebras. If A, B are F-algebras, then Ab B is naturally an F-algebra
since

(ab b)(a1 b b1) = (aa1 b bb1)
Note that A, B are not necessarily commutative rings, so we are somewhat forcing this
construction. In fact, something funny is actually happening. Inside Ab B, Ab 1 and 1b
B are sub-algebras that are isomorphic to A and B, respectively. In particular, Ab 1 com-
mutes with 1b B.

8



Proposition 2.4. Suppose A, B are F-algebras, then for any F-algebra C, there is a bijection
between the following two sets:

tHom(Ab B, C)u Ø tA Ñ C, B Ñ C such that images of A and B commute in Cu

Proof. The inclusion Ď is clear by our previous comment. For the reverse inclusion, Ab B
is generated as an algebra by Ab 1 and 1b B. So given φ1 : A ÝÑ C, φ2 : B ÝÑ C, then
ρ : Ab B ÝÑ C is defined by ab b ÞÑ φ1(a) ¨ φ2(b). �

Given A, B F-algebras and AMB we have homomorphisms A ÝÑ EndF(M) and Bop ÝÑ

EndF(M). Moreover, there images commute i.e., the images of A, Bop commute so (am)b =
a(mb). So we get a map

Ab Bop
ÝÑ EndF(M)

which defined a left Ab Bop-modules structure on M. Thus, we have a natural equiva-
lence of the categories A´ B bi-modules and left Ab Bop-modules.

Commutators. Given A/F some algebra, and Λ Ă A, then

CA(Λ) = ta P A : aλ = λa @a P Au ,

and CA(A) = Z(A). Suppose that M is a right A-module, then we have a homomorphism
Aop ÝÑ EndF(M). If we let C = CEndF(M)(Aop) = EndA(M). To preserve our sanity, we
will regard M as a left C-module. This gives M the structure of a C´ A bi-module.

Theorem 2.5 (Double Centralizer Theorem Warm-Up). Let B be an F-algebra, M a faithful,
semi-simple right B-module, finitely dimensional over F. Let E = EndF(M), C = CE(Bop), then
Bop = CE(C) = CE(CE(Bop)).

Proof. Let φ P CE(C). Choose tm1, . . . , mnu a basis for M/F. Write N =
Àn M Q w =

(m1, . . . , mn). Since M is semi-simple, so N is semi-simple. This allows us to write

N = wB‘ N1 for some N1

Set π : N ÝÑ N1 be a projection (right B-module map) that factors through wB. Since
π P EndB(N) = Mn(EndB(M)) = Mn(CEndF(M)(Bop)) = Mn(C).

Set φ‘n : N ÝÑ N doing φ on each entry. Then wφ‘n = (πw)φ‘n = π(wφ‘n) =
π(wb) P wB. The general principle is the following: MN(t¨u) commute with “scalar ma-
trices” whose entries commute with t¨u, which is why we can move the w inside �

Our next goal is to prove that:

Theorem 2.6. If A is a CSA/F, then AbF Aop – EndF(A).

Proof. Notice that A is an A´ A b-module, so it defines a map Ab Aop ÝÑ EndF(A). The
question is why is this bijective. Suppose that taiu is a baiss for A and (Aop). We wan to
see when

ÿ

ci,jai b aj
?
ÞÝÑ 0 P End(A)

More abstractly, if we have A, B commuting sub-algebras of E. Let ai P A, bj P B be
linearly independent over F, then aibj is independent in E. Since E is an A´ A bi-module,
so Ab Aop left module. E is also a right B-module, in particular Ab Aop ´ B bi-module.
A is a CSA, so it is a simple Ab Aop-module, and EndAbAop(A) = F = Z(A). Thus

CEndF(A)(CEndF(A)(im(Ab Aop))) = CEndF(A)(F) = EndF(A).
9



Then Theorem 2.5 tells us that im(Ab Aop) = EndF(A), which is what we desired.1 �

Thus, if A is a CSA, then Ab Aop – EndF(A) = Mn(F), where n = dimF(A).

Proposition 2.7. A is a CSA if and only if there exists B such that Ab B – Mn(F).

Proof. (ñ). This is clear. (ð). If Ab B – Mn(F), note that Mn(F) are central simple. If
I ď A, then I b B ď Mn(F) by dimension counting. If I is non-trivial, so is I b B, hence A
is simple. Thus, Z(A) = CMn(F)(A)X A. We know that B Ă CMn(F)(A), which implies that
Ab CMn(F)(A) ãÑ Mn(F). But we also know that Ab B – Mn(F) by assumption, hence
we have B = CMn(F)(A). Thus Z(A) = CMn(F)(A)X A = BX A = F. �

Proposition 2.8. A is a CSA/F if and only if for all field extensions L/F such that LbF A CSA/L
if and only if FbF A – Mn(F).

Proof. A is a CSA ñ A b Aop – Mn(F) ñ (A bF Aop) bF L – Mn(L). Notice that we
can re-write (A bF Aop) bF L = (A b L) bL (Aop b L), so by Proposition 2.7, we have
that A b L is a CSA for all L. In particular, A bF F is a CSA. Thus by Theorem 1.24,
AbF F – Mn(D) for some finite dimensional division algebra D/F. Hence for all d P Dˆ,
F[d]/F is a finite extension of F. Since it is a finite extension, d P F, which implies that
D = F i.e., AbF F – Mn(F).

Now suppose that AbF F – Mn(F). So A must be simple, otherwise, I b F ď Ab F =
Mn(F). Now we want to show that Z(Ab F) = Z(A)b F. This is true by considering the
kernel of a linear map and just extending scalars. �

Definition 2.9. If A is a CSA, then deg A =
a

dimF(A). This makes sense since F b A –

Mn(F) has dimension n2.

Definition 2.10. By Theorem 1.24, A – Mn(D), and we can check that Z(D) = F, hence D
is a CSA, which we will call a central division algebra (CDA). We define the index of A
as ind(A) = deg(D), where D is the underlying division algebra. We know that this is
unique up to isomorphism, since D = EndA(P) , where P is a simple right A-module.

Remark 2.11. Note that
dimF(A) = m2 dimF(D)

so that deg A = m deg D = m ind A, and in particular, ind A|deg A.

Brauer Equivalence.

Definition 2.12. CSA’s A, B are Brauer equivalent A v B if and only if there exists r, s such
that Mr(A) – Ms(B). This essentially says that Mr(Mn(DA)) – Ms(Mm(DB)) , which
implies that DA – DB. Alternatively,

A v B ðñ underlying divison algebras are isomorphic.

N.B. If A, B/F are CSA’s, then AbF B is also a CSA. The “cheap” way to prove this is to
just tensor over F and see what happens.

1There was a lot of confusion on this proof. Review Danny’s online notes for valid proof.
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Definition 2.13. The Brauer group Br(F) is the group of Brauer equivalence classes of
CSA’s over F with operation [A] + [B] = [AbF B]. The identity element is [F], and note
that

[A] + [Aop] = [AbF Aop] = [MdimF A(F)] = [F].

Definition 2.14. The exponent of A (or period of A) is the order of [A] in Br(F).

N.B. We will show that per A| ind A.

3. LECTURE (1/23): NOETHER-SKOLEM AND EXAMPLES

Last time, we had a number of ways to characterize CSA’s. A CSA if and only if there
exists B such that Ab B P Mn(F) if and only if Ab Aop – End(A) if and only if AbF L –
Mn(F) for some L/F if and only if AbF F – Mn(F) if adn only if for every CSA B, Ab B
is a CSA (similarly for field extensions).

If A, B CSA, then Ab B is a CSA. In Definition 2.12, we defined the relation that gave
rise to the Brauer group. Moreover, in Definition 2.13, we gave the Brauer group a group
structure.

Lemma 3.1. A/F is a CSA and B/F simple, finite dimensional, then Ab B is simple.

Proof. If L = Z(B), then B/L is a CSA. Hence AbF B – AbF (LbL B) – (AbF L)bL B
i.e., we are tensoring over two CSA’s. Thus, we have a CSA/L, in particular, simple. �

Lemma 3.2. Let A = Bb C CSA’s, then C = CA(B).

Proof. By definition, everything in C centralizes A, so C Ă CA(B). But

dimF(CA(B)) = dimF(CA(B)b F) = dimF(CAbF(Bb F))

Without lose of generality, B = Mn(F), C = Mm(F). Hence

A = Mn(F)bMm(F) = Mm(Mn(F)).

So we want to look at

CMm(Mn(F))(Mn(F)) = Mm(CMn(F) Mn(F)) = Mm(Z(Mn(F))) = Mm(F) = C

by Lemma 3.4.1 of Danny’s notes.
�

Theorem 3.3 (Noether-Skolem). Suppose that A/F is a CSA, B, B1 Ă A is a simple sub-algebra
and ψ : B – B1. Then there exists a P Aˆ such that ψ(b) = aba´1.

N.B. Think about inner automorphisms of matrices.

Proof. So B ãÑ A, B1 ãÑ A and A ãÑ Ab Aop – EndF(A) = EndF(V) where V = A.2 V
is a A´ A bi-module, so it is a B´ A module or Bb Aop left module. Since B is simple

2We want to do this to remind ourselves that A is a vector space and also for notational reasons.
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and Aop CSA, we have B b Aop is simple, so it has a unique simple left module. V is
determined by its dimension as a Bb Aop module since it can be regarded as a Bb Aop

module in two different ways by two different actions, (ψ(b)b a)(v) and (bb a)(v). These
two modules are isomorphic, that is to say that there exists φ : V – V such that φ((b b
a1)(b)) = (ψ(b)b a1)(φ(v)).

Note that φ P End(V)ˆ = End(A)ˆ = (A b Aop)ˆ by the sandwich map. Hence
φ is a right A-module map i.e., φ P CAbAop(Aop) = A b 1. This means that φ is left-
multiplication by a P Aˆ. Then for all a P Aˆ, let a1 = 1, then

ab 1(bb 1(v)) = ψ(b)b 1(ab 1(v))
abv = ψ(b)av

ab = ψ(b)a

aba´1 = ψ(b)

�

Theorem 3.4 (Double Centralizer Theorem Step 3). Let A be a CSA, B Ă A simple, then

(dimF(CA(B)))(dimF(B)) = dimF(A).

Proof. We want to look at CA(B). Since B is simple, B is a CSA/L where L = Z(B). Since
L ãÑ B ãÑ A ãÑ A b Aop = EndF(A). We remark that A is a left L-vector space, B acts
on A as L-linear maps, so B Ă EndL(A) Ă EndF(A). We now look at CAbAop(B) =
CA(B)b Aop. Since L Ă B, then CAbAop(B) acts on A via L-linear maps. Hence

CAbAop(B) = CEndF(A)(B) = CEndL(A)(B).

So Theorem 4.1 tells us that

EndL(A) = BbL CEndL(B) = BbL (B).

Now we want to compute the dimensions,

dimL(EndL(A)) = dimL(A)2 =

(
dimF(A)

[L : F]

)2

,

dimL(B) =
dimF(B)
[L : F]

dimL(CEndL(A)(B)) =
dimF CEndL(B)

[L : F]
=

dimF CEndF(A)(B)
[L : F]

=
dimF CAbAop(B)

[L : F]
=

(dimF CA(B))dimF A
[L : F]

=
dimF CA(B)b Aop

[L : F]
Thus (

dimF(A)

[L : F]

)2

=
dimF B
[L : F]

(
dimF CA(B)dimF(A)

[L : F]

)
.

�

Existence of Maximal Subfields.

Definition 3.5. If A/F is a CSA, F Ă E Ă A is a sub-field, we say that E is a maximal
sub-field if [E : F] = deg A.

12



Theorem 3.6. If A is a division algebra, then there exists maximal and separable sub-fields.

Proof. We will show in the case when F is infinite. Given some a P A, look at F(a). We
know that [F(a) : F] ď n = deg A, so it is spanned by

 

1, a, a2, . . . , an´1( . We want these
to be independent over F, so have an n dimension extension as well as the polynomial
satisfied by a of deg n to be separable. This polynomial at F is χn, the characteristic poly-
nomial. If χn has distinct roots, then it will be minimal, hence the unique polynomial of
degree n satisfied by aF. The discriminant of the polynomial gives a polynomial in the
coefficients which are polynomials in the coordinates of a and is non-vanishing if distinct
eigenvalues.

Lemma 3.7. Suppose V is a finite dimensional vector space over F, F Ă L, and F is infinite. If
f P L[x1, . . . , xn] non-constant, then there exists a1, . . . , an P F, then f (ÝÑa ) ‰ 0

Proof. For n = 1, any polynomial has only finitely many zeros if it is non-zero. Then we
induct and just consider k(x1, . . . , xn´1)[xn]. �

Hence by Lemma 3.7, we have our desired polynomial. �

Remark 3.8. From Theorem 3.4,

(dimF E)(dimF CA(E)) = dimF A.

If CA(E) Ľ E, then add another element to get a commutative sub-algebra. Indeed, if
dimF E ď

a

dimF(A) = deg A we can always get a bigger field. If F finite, then all
extensions are separable, so we are done.

Structure and Examples.

Definition 3.9. A quaternion algebra is a degree 2 CSA. The structure is given by M2(F)
or D a division algebra.

There exists quadratic separable sub-fields if division algebra (and usually with ma-
trices.) Let E/F be of degree 2, then E acts on itself by left multiplication, and E ãÑ

EndF(E) = M2(F). Suppose A is a quadratic extension, where char F ‰ 2, then E =
F(
?

a), and let i =
?

a. Then we have an automorphism of E/F where i ÞÑ ´i. So Theo-
rem 3.3, says that there exists j P Aˆ such that jij´1 = ´i, so ij = ´ji. This says that j2
commutes with i and j.

Lemma 3.10. We have that A = F‘ Fi‘ Fi‘ Fij.

Proof. As a left F(i) space, 1 does not generated and dimF(i) A = 2 and j R F(i) for com-
mutativity reasons. So this implies that A = F(i)‘ F(i)j. Since j2 commutes with ij, we
have j2 P Z(A) = F, so j2 = b P F. Hence A is generated by i, j such that i2 = a P Fˆ, j2 =
b P Fˆ and ij = ´ji. We can also deduce our usually anti-commutativity properties that
we expect in a quaternion algebra.

Conversely, given any a, b P Fˆ, we can define (a, b/F) to be the algebra above; this is
a CSA since it is a quaternion algebra. It is enough to show that (a, b/F) works. If we
replace i ÞÑ i/

?
a = ĩ and j ÞÑ j/

?
b = j̃. Now we have ĩ2 = 1 = j̃2, hence we want to

show that (1, 1/F) is a CSA. Note that (1, 1/F) – EndF(F[i]) via F[i] ÞÑ left multiplication
and j ÞÑ Galois action i ÞÑ ´i. It is an exercise to show that this map is an injection. �
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Symbol Algebras. Given A/F a CSA of degree n. Suppose that there exists E Ă A a
maximal sub-field where E = F( n

?
a).3 Let σ P Gal(E/F) be a generator via σ(α) = ζα

where α = n
?

a and ζ is a primitive nth root of unity. Theorem 3.3, there exists some β P Aˆ

such that βαβ´1 = ωα.

Lemma 3.11. We can write

A = E‘ Eβ‘ Eβ2
‘ ¨ ¨ ¨ ‘ Eβn´1.

Proof. This is true via the linear independence of characters. Consider the action of β
on A via conjugation, then Eβi = E as a vector space over E or over F. We have that
α(xβi)α´1 = ζ´ixβi, so Eβi consists of eigenvectors from conjugacy by α with value ζ´i.
This implies that βn is central, hence βn = b P Fˆ. So

A =
à

i,jPt1,...,nu
Fαiβj

where βα = ζαβ and αn = a and βn = b. �

Definition 3.12. If we define the symbol algebra, denoted by (a, b)ζ , to be
à

i,jPt1,...,nu
Fαiβj

where βα = ζαβ and αn = a and βn = b, then (a, b)ζ is a CSA/F.

What if we don’t assume Kummer extension? What about just a Galois extension?

Cyclic Algebras. Assume that E/F is cyclic with Gal(E/F) = xσy where σn = IdE. Sup-
pose that E Ă A is a maximal sub-field, we can choose µ P A such that µx = σ(x)µ for all
x P E via Theorem 3.3, then

A = E‘ Eµ‘ Eµ2
‘ ¨ ¨ ¨ ‘ Eµn´1.

Like before, it will follow that µn = b P F = Z(A).

Definition 3.13. Then we say that A = ∆(E, σ, b) is a cyclic algebra.

It turns out that over a number field, all CSA’s are of this form. There is a result due
to Albert, that shows that these all CSA’s are not cyclic. If E/F is an arbitrary Galois
extension and E Ă A is maximal. For every g P G, there exists ug P A such that ugx =
g(x)ug so that A =

À

gPG Eug.

4. LECTURE (1/30): CROSSED PRODUCTS

Last time, we did some warm-ups to the Double Centralizer Theorem (Theorem 2.5
and Theorem 3.4) i.e., if B Ă EndF(V) where B is simple, then CEndF(V)(CEndF(V)B) = B

3We call this a cyclic Kummer extension.
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and if A – Bb C all CSA/F, then C = CA(B). As well as the Noether-Skolem Theorem
(Theorem 3.3).
Theorem 4.1 (Double Centralizer Theorem Warm-up 3). If B Ă A are CSA/F, then

(1) CA(B) is a CSA/F,
(2) A = BCA(B) – Bb CA(B).

Proof. If (2) holds, then A simple implies CA(B) is simple. If we look at 1b Z(CA(B)) ãÑ

Z(A) = F, hence CA(B) is central. To prove (2), we consider the map

Bb CA(B) ÝÑ A.

Without lose of generality, F = F̄, in particular, B = Mn(F) and A = EndF(V). Since
B is simple, there exists a simple module, and since Fn is one such module, it is our
unique one. If B Ă A, then V is a B-module, which implies that V = (Fn)m. Hence
A = Mnm(F) = Mm(Mn(F)).

Now we can compute CA(B) = CMm(Mn(F))(Mn(F)), where Mn(F) are block scalar
matrices. Note that CMm(Mn(F))(Mn(F)) = Mm(Z(Mn(F))) = Mm(F). Thus we have

Mn(F)bMm(F) – Mmn(F).

�

Theorem 4.2 (Full-on Double Centralizer Theorem ). Let B Ă A where A is a CSA/F and B
is simple. We have the following:

(1) CA(B) is simple;
(2) (dimF B)(dimF(CA(B))) = dimF(A) (Theorem 3.4);
(3) CA(CA(B)) = B;
(4) If B is a CSA/F, then A – Bb CA(B) (Theorem 4.1).

Proof. To prove (3), we can think of B ãÑ A ãÑ Ab Aop = EndF(A). By Theorem 2.5, we
know that B = CEndF(A)(CEndF(A)(B)). We note that

CEndF(A)(B) = CAbAop(B) = CA(B)b Aop,

and for the second centralizer

CAbAop(CA(B)b Aop) = CA(CA(B))b 1 = B.

(1) follows from the fact that CAbAop(B) = CA(B)b Aop is simple. �

Suppose A is a CSA/F and E Ă A maximal sub-field i.e., [E : F] = deg A and E/F
is Galois with Galois group G. In this case, if σ P G, there exists uσ P Aˆ such that
uσ ˆ u´1

σ = σ(x) for x P E4. We will show that

A =
à

σPG
Euσ.

Lemma 4.3. These Noether-Skolem elements uσ are independent of E.
Proof. If not, then choose some minimal dependence relation

ÿ

xσuσ = 0

ñ 0 =
ÿ

xσuσy =
ÿ

xσσ(y)uσy.

4We will call these elements uσ Noether-Skolem elements.
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This implies that λxσ = xσσ(y) for all σ for some fixed λ i.e., σ(y) = λ for all σ. Thus
y P F, so by dimension count A = Euσ. If uσ and vσ are both Noether-Skolem for σ P G,
then uσv´1

σ x = xuσv´1
σ for x P E. We note that uσv´1

σ P CA(E) = E by Double Centralizer
Theorem, so vσ = λσuσ for some λσ P Eˆ. �

Conversely, such a vσ is Noether-Skolem for σ. Notice that uσuτ and uστ are both
Noether-Skolem for στ, so uσuτ = c(σ, τ)uστ for some c(σ, τ) P Eˆ. We can also check
associativity meaning that uσ(uτuγ) = (uσuτ)uγ. We will find that

c(σ, τ)c(στ, γ) = c(σ, τγ)σ(c(σ, γ)). (4.3.0.1)

Definition 4.4. We call this the 2-cocycle condition for a function c : Gˆ G ÝÑ Eˆ if

c(σ, τ)c(στ, γ) = c(σ, τγ)σ(c(σ, γ)).

Definition 4.5. If E/F is Galois, c : GˆG ÝÑ Eˆ a 2-cocycle condition, then define (E, G, c)
to be the crossed product algebra, which we denote by

À

Euσ with multiplication de-
fined by

(xuσ)(yuτ) = xσ(y)c(σ, τ)uστ.

Proposition 4.6. A = (E, G, c) as above is a CSA/F.

Proof. If A�B, then E ãÑ B since E is simple and uσ ÝÑ vσ P B are Noether-Skolem
in B for E. Due to the independence of B, then we have injection. Note that Z(A) Ă
CA(E) = E and note that CA(tuσuσPG)X E = F due to the Galois action, so we have that
A is central. �

Question 1. When is (E, G, c) – (E, G, c1)?

By Noether-Skolem, the isomorphism must preserve E so ϕ(E) = E. Hence ϕ(uσ) is
a Noether-Skolem in (E, G, c1). Since (E, G, c) =

À

Euσ and (E, G, c1) =
À

Euσ1 , hence
ϕ(uσ) = xσuσ1 . The homorphism condition says that

ϕ(c(σ, τ)uστ) = c(σ, τ)xστu1στ = ϕ(uσuτ) = ϕ(uσ)ϕ(uτ) = (xσu1σ)(xτu1τ),

which implies that
c(σ, τ)xστ = xσσ(xτ)c1(σ, τ)

i.e., c(σ, τ) = xσσ(xτ)x´1
στ c1(σ, τ) for some elements σ P Eˆ for each σ P G.

Definition 4.7. We say that c, c1 are cohomologous if there exists b : G ÝÑ Eˆ such that

c(σ, τ) = b(σ)σ(b(τ))b(στ)´1c1(σ, τ).

Definition 4.8. Set

B2(G, Eˆ) =
!

f : Gˆ G ÝÑ Eˆ| f = b(σ)σ(b(τ))b(στ)´1 for some b : G ÝÑ Eˆ
)

and
Z2(G, Eˆ) =

 

f : Gˆ G ÝÑ Eˆ|2 cocyles
(

.
These are groups via point-wise multiplication. We define

H2(G, Eˆ) =
Z2(G, Eˆ)
B2(G, Eˆ)

.

16



Proposition 4.9. H2(G, Eˆ) is in bijection with isomorphism classes if CSA/F such that E Ă A
is maximal.

To approach the group structure, we need to learn about idempotents.

Idempotents.

Definition 4.10. We call an element e P A an idempotent if e2 = e.

If e is central, then it is clear that e(1´ e) = 0 and (1´ e)2 = 1´ e. Now

A = A ¨ 1 = A(e + (1´ e)) = Aeˆ A(1´ e).

The point is that e P eA and (1´ e) P (1´ e)A act as identities, hence (ae)(b(1´ e)) =
abe(1 ´ e) = 0. Writing a ring A = A1 ˆ A2 is equivalent to finding idempotents i.e.,
identity elements in A1 and A2. If e is not central, f = 1´ e and e + f = 1. So we can
write

1A1 = (e + f )A(e + f ) = eAe + eA f + f Ae + f A f
where eAe and f A f are rings with identities e and f .

If we think of

A = End(AA) = End(eA‘ f A) =

(
End(eA) Hom( f A, eA)

Hom(eA, f A) End( f A)

)
We claim that this decomposition falls in line with A = eAe‘ eA f ‘ f Ae‘ f A f . Suppose
we take (ea f )(eb) = 0 and (ea f )( f b) P eA. We note that

ea f =

(
0 ‹

0 0

)
so we have that

eA f =

(
0 Hom( f A, eA)
0 0

)
So eAe = EndA(eA)and eA f = HomA( f A, eA), and so on and so on. This is called Pierce
decomposition. So as a matrix algebra we have

A =

(
eAe f Ae
eA f f A f

)
Let’s assume that A is a CSA/F and let e P A be an idempotent. So we have eAe =
EndA(eA) = EndA(Pn) = Mn(D) and A = EndA(AA) = EndA(Pm) = Mm(D), where
D = EndA(PA), which implies that eAe v A under the Brauer equivalence. So idempo-
tents give us a way to recognize Brauer equivalence.

If we take two cross product algebras, (E, G, c) b (E, G, c1) v (E, G, cc1). We want an
idempotent in the tensor product that will allow us to “chop” or deduce our equivalence.
Note that

Eb E = Eb F[x]/ f (x) = E[x]/ f (x) =
ź

E[x]/(x´ αi) =
ź

σPG

E[x]/(x´ σ(α)) =
ź

σPG

E,

where α is just some root. This says that there are idempotents in the product, namely
eσ P Eb E, where σ P G. The punchline is that e1 will work, but we will need to prove it.
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Let’s look at the map

Eb E ÝÑ
E[x]

x´ σ(α)
– E

ab b ÞÝÑ aσ(b)
1b α ÞÝÑ x

(1b z)eσ ÞÝÑ Eσ(a)
(σ(a)b 1)eσ ÞÝÑ σ(a)

Hence (1b a)Eσ = (σ(z)b 1)eσ. Let (E, G, c) = A Q uσ and (E, G, c1) = A1 Q u1σ. Let e = e1
so eAe Q ewσ where wσ = uσ b u1σ, which does exists. We note that Eb E Ă Ab A1. We
want to see how the e and the Noether-Skolem elements interact,

(1b u1σ)e(1b u
1´1
σ )(1b x) = (1b u

1´1
σ )e(1b σ(x))(1b u1σ)

= (1b u
1´1
σ )e(σ(x)b 1)(1b u1σ)

= (1b u
1´1
σ )e(1b u1σ)(σ(x)b 1).

This did what eσ should do. Note that conjugation takes idempotents to idempotents, so
(1b u

1´1
σ ) is in fact idempotent. We can note that (uσ b u1σ)e = e(uσ b u1σ), so if we let

wσ = (uσ b u1σ). Then we have that ewσ = e2wσ = ewσe P eAb A1e. We want eAb A1e as
(E, G, c). Since eEb E – E via the map e(Eb 1).

We want to show that if we have

ewσ(xb 1)e = e(uσ b u1σ)(xb 1)e
= e(σ(x)b 1)(uσ b u1σ)e
= e(σ(x)b 1)wσe

So ew1σ’s are Noether-Skolem elements, so

eA‘ A1e Ě
à

σPG
e(Eb 1)ewσ.

For equality, let e(xuσ b yu1τ)e P eAb A1e. We can re-write this as so,

e(xuσ b yu1τ)e = e(xb y)(uσ b u1τ)e

= e(xb y)(uσu
1´1
τ b 1)(uτ b u1τ)e

= (xyb 1)e(uσu´1
τ b 1)ewτe

= (xyb 1)λe(uσuτ´1 b 1)e
= (xyb 1)λ(uσuτ´1 b 1)eστ´1e

=

"

0 if σ ‰ τ
λ2e otherwise.

=

"

0 if σ ‰ τ
(xyb 1)(λb 1)eλ2ewσe P

À

σPG e(Eb 1)ewσ otherwise.

since u´1
τ = λuτ´1 for some λ P Eˆ. Hence eAb A1e – Ab A1 – (E, G, cc1). Danny checks

the cocycle condition, however, I will not repeat this computation. Thus we have shown
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that the operation in H2 = Br group operation i.e.,

Br(E/F) := t[A] : A CSA/F with E Ă A maximalu

is a subgroup of Br(F) – H2(G, Eˆ). We sometimes call this group Br(E/F) the relative
Brauer group of F.

5. LECTURE (2/6): FIRST AND SECOND COHOMOLOGY GROUPS

Last time we defined that Br(E/F) is the set of equivalence classes of CSA/F with
E maximal sub-field and E/F is Galois. We showed that his is actually a group, namely,
Br(E/F) – H2(G, Eˆ) = Z2(G, Eˆ)/B2(G, Eˆ). The mapping from H2(G, Eˆ) to Br(E/F)
was defined by c ÞÑ (E, G, c), then crossed product algebra as defined in 4.5. We want to
relate splitting fields to maximal subfields.

Definition 5.1. We say that E/F splits if AbF E – Mn(E).

We always have splitting fields, namely the algebraic closure; moreover, there are split-
ting fields which are finite extensions.

Lemma 5.2. If A CSA /F, E Ă A subfield, then CA(E) v AbF E.

Proof. Note that bE ãÑ Ab Aop = EndF A. We look at

EndE(A) = CEndF(A)(E) = Ab CAop(E) = AbF EbE CAop(E)

= (AbF E)bE CAop(E) = (AbF E)bE CA(E)op.
Since EndE(A) is a split E-algebra, thus

[Ab E]´ [CA(E)] = 0 P Br E.

�

Corollary 5.3. If E Ă D D CSA /F, then (ind Db E)[E : F] = ind D.

Proof. By Theorem 4.2, we have that dimF CD(E)[E : F] = dimF D. By taking the dimen-
sion over E, we have

deg CD(E)2[E : F]2 = (deg D)2

deg CD(E)[E : F] = (deg D) = ind D
ñ ind CD(E)[E : F] = ind D
(ind Db E)[E : f ] = ind D.

�

Remark 5.4. If E Ă A is a maximal subfield, then A b E is split. Indeed, since A b E v
CA(E) = E by Theorem 4.2.

Proposition 5.5. If A CSA /F, Eb A – Mn(F), and [E : F] = deg A = n, then E is isomor-
phic to a maximal subfield of A.
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Proof. Note that E ãÑ EndF(E) = Mn(F) ãÑ AbMn(F). Now we compute

CAbMn(F)(E) – (AbMn(F))bF E

– Mn(F) = EbMn(F)

We have the map

ϕ : EbMn(F) ÝÑ AbMn(F)
Mn(F) ÞÝÑ B

By Noether-Skolem, we acn replace ϕ by ϕ composed with an inner automorphism so
that B – 1bMn(F). So now note that CEbMn(F)(Mn(F)) Ă E Ă EbMn(F), hence ϕ(E) Ă
CEbMn(F)(Mn(F))E = Ab 1. �

If we have a splitting field for our algebra with appropriate dimension, then it must a
maximal field.

Corollary 5.6. Let A/F be a CSA /F, then [A] P Br(E/F) for some E/F is Galois.

Proof. Write A = Mm(D), where [A] = [D]. WLOG A is a division algebra. We know that
D has a maximal separable subfield L Ă D. Let E/F be the Galois closure of L/F. We
claim that E ãÑ Mm(D). We have that E ãÑ EndL(E) = M[E:L](L) via left-multiplication. If
we look at DbF M[E:L](F) Ą Lb M[E:L](F) = M[E:L](L) Ą E. Note that the left hand side
has degree equal to [E : F] since deg D[E : L] = [L : F][E : L] = [E : F]. By Lemma 5.5, we
have that E is a maximal subfield of DbM[E:L](F). Therefore, [A] = [D] P Br(E/F). �

Galois Descent. We fix E/F a G-Galois extension. A is a CSA /F if and only if Ab E –
Mn(E) for some E/F Galois. We can interpret this as saying that A is a “twiseted form”
of a matrix algebra.

Definition 5.7. Given an algebra A/F, we say that B/F is a twisted form of A if AbF E –
BbF E for some E/F separable and Galois.5

Descent is the process of going from E to F i.e., descending back down. We use that fact
that EG = F where G is the Galois group. The idea is as follows: given AbE, G acts on the
E-part and the invariatns give A. The issue here is that the isomorphism in Definition 5.7
does not respect the Galois action, meaning that different actions could produce different
isomorphisms.

Definition 5.8. A semi-linear action of G on an E-vector space V is an action of G on V (as
F-linear transformations) such that

σ(xv) = σ(x)σ(v) @ x P E, v P V. (5.8.0.2)

Theorem 5.9. There is an equivalence of categories

tF-vector spacesu ÐÑ tE-vector spaces with semi-linear actionu
V ÞÝÑ V bF E

WG
ÐÝß W

5We could make an equivalent definition for any algebraic structure. We leave this vague on purpose.
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If V is an E-space with semi-linear action, we get an action of (E, G, 1) on V where
E =

À

Euσ and uσuτ = uστ and uσx = σ(x)uσ via (xuσ)(v) = xσ(v). We can check
well-definedness as so

(xuσ)(yuτ)(v) = xuσ(yτ(v)) = xσ(y)στ(v)
ñ (xσ(y)uσuτ)(v) = xσ(y)uστ(v) = xσ(y)στ(v) = xσ(y)στ(v)

Actually, a semi-linear action on U is a (E, G, 1) module structure uσv. Hence (E, G, 1) has
a unique simple module E. If V is semi-linear, then V – En and vice versa. To see the
equivalence of Theorem 5.9, we notice that the unique simple E goes to F and the F goes
back to E, and these are unique.

If V is some semi-linear space, so a (E, G, 1) module, then VG – E1 b(E,G,1) V, where E1

is the unique simple (E, G, 1) module. We hope to describe this later.

Definition 5.10. If V, W are semi-linear spaces, then a semi-linear morphism is ϕ : V Ñ W
is an F linear map such that ϕ(σ(v)) = σϕ(v).

Under the equivalence of Theorem 5.9, we can see that
à

Fei – W ÝÑ
à

Eei – W b E ÝÑ (W b E)G =
à

EGei –
à

Fei

In the reverse direction, we know that

V =
à

Eei ÝÑ
à

EGei =
à

Fei ÝÑ
à

(FbF E)ei =
à

Eei.

We have shown that there is a natural isomorphism of objects, so now we must consider
arrows. If ϕ : W ÝÑ W is an F- linear map, then ϕb E : W b E ÝÑ W1 b E. Then

ab x ϕ(a)b x

ab σ(x) ϕ(a)b σ(x)

σ σ

i.e., σ acts on the left component. If ψ : V ÝÑ V1 is semi-linear, then ψ induces a map via
restriction to VG ÝÑ (V1)G, so the arrows correspond as well.

If V, W are semi-linear spaces, how should we define the action on V bE W? It is sort
of induced on us, meaning V = V b E and W = W b E. Hence

V bE W = (V b E)bE (W b E) = (V bW)b E.

We can check the compatibility of the action by consider the diagram:

(V b E)bE (W b E) (V bW)b E

V bW

Hence the answer to our previous question is that σ must act on the right component.
Thus we have an equivalence of categories with tensors.
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Definition 5.11. A semi-linear action of G on an algebra A/E is a map from G ÝÑ Aut(A/F)
such that σ(xa) = σ(x)σ(a) for all x P E, a P A. In particular, σ(ab) = σ(a)σ(b) implies
that Ab A ÝÑ A is semi-linear.

Theorem 5.9 says that semi-linear algebras over E correspond to F-algebras by taking
invariants and tensoring up. We now want to classify these semi-linear mappings. If A
is some interesting algebra, we want to find all twisted forms A. If B is a twisted form
and we have an isomorphism φ : B b E ÝÑ A b E. We can define a new action where
σB(α) = φ(σ(φ´1(α))) where α P Ab E. How do these actions compare?

We can compute σ´1(σB(α)) P AutE(A b E) and we can check that σ´1(σB(xα)) =
xσ´1(σB(α)). For similar reasons, σB ˝ σ´1 P AutE(A b E) so σB = aσ ˝ σ for some aσ P

AutE(A b E). We can check that σBτB = (στ)B; moreover that aστ = aσσ(aτ), which is
called the 1-cocycle or equivalently a(στ) = a(σ)σ(aτ) a cross homomorphism.

Theorem 5.12. If B is a twisted form of A, there there exists a map G to AutE(Ab E) which is
a 1-cocycle and such that B = (Ab E)G

a where the subscript means Ab E with the new action
σa(α) = aσσ(α). Conversely, every such 1-cocycle gives a twisted form.

Proof. Given a 1-cocycle a : G ÝÑ Aut(A b E), let’s check that the action of (A b E)a is
semi-linear. We want to know that σaτa(α) = (στ)a(α) and σa(xα) = σ(x)σa(x). Using
the assumption that a is a 1-cocycle and doing a cohomology calculation, we can verify
these results. Once we picked an isomorphism A b E ÝÑ B b E, then everything else
was well-defined. If we pick different ϕ’s then how is everything related. We can find
that aσ and a1σ are cohomologous if a1σ = baσ(σb´1σ´1) for some b P Aut(A b E). The
equivalence classes under cohomology are in bijective correspondence with isomorphism
classes of semi-linear actions and therefore, in bijection with twisted forms of A.

�

Definition 5.13. We define H1(G, Aut(A b E)) is the set of these cohomology classes i.e.,
cocycles up to equivalence. The base point of this pointed set is aσ = 1, which refers to A
as a twisted algebra of itself A.

6. LECTURE (2/13): COHOMOLOGY AND THE CONNECTING MAP

Let E/F be G Galois and some vector space V/F. We can tensor up to V b E with a
G action on the second component. We note that V – (V b E)G by hitting the tensor
with G and seeing what doesn’t move. Recall Theorem 5.9. Suppose that V = Fn, then
V b E = En and we can write EndE(V b E) = En2

. By thinking about the action of G
coordinate wise on EndE(Vb E), we can deduce that some σ P G acts on f P EndE(Vb E)
by σ( f ) = σ ˝ f ˝ σ´1. For example, if f = xeij such that

σ( f )(ek) = σ( f (ek)) = σ(xeijek) = σ(xδjkei) = σ(x)δjkei.

Give a “model” algebra A0/F, we can ask to classify all of the A/F such that A b
E – A0 b E, in particular, we are looking for CSA /F that split over E of degree n. If
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φ : Ab E ÝÑ A0 b E, then we can transport the action of G on the left to the right i.e., we
want to analyze the Galois action on E. Hence

σ ¨ x = φσφ´1(x). (6.0.0.3)
If we set b(σ) = φσφ´1σ´1 P AutE(A0 b E), then we can rewrite (6.0.0.3) as

σ ¨ x = b(σ) ˝ σ(x). (6.0.0.4)

If we set b(στ) = b(σ)σ(b(τ)), then we can say that σ ˝ (τ ˝ x) = στ ˝ x. We can also
modify φ by hitting A0 ˆ E by an automorphism a. Set φ1 = a´1φ. The new action will be

φ1σφ
1´1σ

1´1 = a´1φσ(a´1φ)´1σ´1

= a´1φσφ´1aσ´1

= a´1φσφ´1σ´1σaσ´1

= a´1b(σ)σ(a),

hence we say that

b v b1 ðñ b1(σ) = a´1b(σ)σ(a) for some a P AutE(A0 b E).

Definition 6.1. Suppose that X is a group with action of G.Then we define

Z1(G, X) = tb : G ÝÑ X | b(στ) = b(σ)σ(b(τ))u

and b v b1 if there exist some x P X such that b1(σ) = x´1b(σ)σ(x) for all σ P G. We define
H1(G, X) to be the set of equivalence classes of the above form.

In particular, we know that

CSA /F of degree n with splitting field E/F ÐÑ H1(G, AutE(Mn(E)))

Note that GLn(E)�AutE(Mn(E)) with conjugation by T and the kernel of this map are
the central matrices which are the scalars i.e., Eˆ.

Definition 6.2. We define PGLn(E) = GLn(E)/Eˆ. From Definition 6.1, we have that

H1(G, AutE(Mn(E))) – H1(G, PGLn(E)).

Recall that (E, G, c) =
À

σPG Euσ where uτ = c(σ, τ)uστ. For this course, we say that
given u#1, u#1, u#1, we have that

c(σ, τ)c(στ, γ) = c(σ, τγ)σ(c(τ, γ))

i.e., the two co-cycle condition. If we altered u#1 to vσ = b(σ)u#1. This alteration does
give an equivalence between the co-cycles by setting

c1(σ, τ) = b(σ)σ(b(τ))b(στ)´1c(στ), (6.2.0.5)

which leads us to the notion of cohomologus. We say that c v c if and only if D b that
satisfies (6.2.0.5). The equivalence classes for a group H2(G, Eˆ) = Br(E/F).

Thinking about H2 Abstractly. Abstractly, we can think of H2 by letting X be an Abelian
group with G action. We set

Z2(G, X) = tc : Gˆ G ÝÑ X | c(σ, τ)c(στ, γ) = c(σ, τγ)σ(c(τ, γ))u
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We set C1(G, X) as the arrows from G to X. For a b P C1(G, X), we say that the boundary
is

Bb(σ, τ) = b(σ)σ(b(τ))
Then we have

H2(G, X) =
Z2(G, X)

B2(G, X)
.

If X is a set with G action, then

H0(G, X) = Z0(G, X) = tx P X : σ(x) = xu = XG.

The Long Exact Sequences.

Theorem 6.3. Given a SES
1 ÝÑ A ÝÑ B ÝÑ C ÝÑ 1

of groups with G action. Taking cohomology gives a long exact sequence

1 H0(G, A) H0(G, B) H0(G, C)

H1(G, A) H1(G, B) H1(G, C)

H2(G, A) H2(G, B) H2(G, C)

δ0

δ1

and we stop at a certain point if A Ă Z(B) or unless B is Abelian.

Remark 6.4. If X, Y, Z are pointed sets, we say that X
f
ÝÑ Y

g
ÝÑ Z if and only if ker g =

im f as pointed sets.

What are the transgression maps when the groups are not Abelian? For δ0, we can take
this for granted. We want to look at δ1. Assume that A Ă Z(B) choose a c P Z1(G, C).
Pick some b P C1(G, C), then b(σ) P B which happens to map to c(σ) P A. We look that

Bb(στ) = b(σ)σ(b(τ))b(στ)´1
P C2(G, B),

hence Bb(σ, τ) = a(σ, τ) P C2(G, A). We want to show that

a(σ, τ)a(στ, γ) = a(σ, τγ)σ(a(τ, γ)).

Writing everything out with a(σ, τ) = b(σ)σ(b(τ))b(στ)´1, we have prove this equality.
We want to specialize to the sequence

1 ÝÑ Eˆ ÝÑ GL(V b E) ÝÑ PGL(V b E) ÝÑ 1.

Taking cohomology, we have

H1(G, PGL(V b E)) ÝÑ H2(G, Eˆ) = Br(E/F).
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Let’s fix n = [E : F] = dim V. We claim that under these assumptions, the above map
is surjective. Pick c P Z2(G, Eˆ). Let eσ be a basis for V induced by G. We define b P
C1(G, GL(V b E)) via b(σ)(eτ) = c(σ, τ)eστ. Note that

b(σ)σ(b(τ))(eγ) = b(σ)(σb(τ)σ´1(eγ)

= b(σ)(σ(b(τ)eγ))

= b(σ)σ(c(σ, γ)eγ)

= b(σ)σ(c(τ, γ))eγτ

= σ(c(τ, γ))c(σ, τγ)eστγ

= c(σ, τ)c(στ, γ)eστγ

= c(σ, τ)b(σ, τ)eγ

ñ b(σ)σ(b(τ)) = c(σ, τ)b(σ, τ)

ñ b(σ)σ(b(τ))b(στ)´1 v c(σ, τ)

This implies that modulo Eˆ, we have that

b(σ) σ(b(τ)) = b(στ),

hence Bb = c is a lift if b̄ P Z1(G, PGL). What we have said is that if we tweak the standard
Galois action on EndE(VbE) by the b̄ P Z1(G, PGL), then the image of b̄ under δ1 isc from
(E, G, c) via δ1. We want to determine the algebra from b̄. We want to take the invariants
of the tweaked Galois action in order to recover this algebra, where we define the new
action for f P EndE(V b E) as

σ( f ) = b̄(σ) ˝ σ( f ) = b(σ) ˝ σ( f ) ˝ b(σ)´1

where b is a representative of b̄. We want to find elements f that are invariant under the
tweaked action. Hence we can think of f ÞÑ b̄σ( f ) = b(σ) ˝ σ( f ) ˝ b(σ)´1. The invariants
are a CSA and we want to compare it with (E, G, c). We set

EndE(V b E)G,b̄ = t f : b(σ)σ( f ) = f b(σ) @σ P Gu .

If σ P G, define yσ P EndE(V b E) via yσ(eτ) = c(τ, σ)eτσ. If x P E, we define vx P
EndE(V b E) via vx(eτ) = τ(x)eτ. We note that these are fixed. Indeed, let’s look at
b(σ)σ(vx) = vxb(σ). Since we have defined these notions on a basis, it suffices to consider

vxb(σ)(eτ) = vx(c(σ, τ)eστ)

= c(σ, τ)vx(eστ)

= c(σ, τ)στ(x)eστ

ñ b(σ)σ(vx)(eτ) = b(σ)(σ(vx(σ
´1eτ)))

= b(σ)(σ(vxeτ))

= b(σ)(σ(τ(x)eτ))

= b(σ)(στ(x)eτ)

= στ(x)b(σ)eτ

= στ(x)c(σ, τ)eστ

6 vxb(σ)(eτ) = b(σ)σ(vx)(eτ).
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Similary, we can show that yσ, namely, yτb(σ) = b(σ)σ(yτ). We can check this

yτb(σ)(eγ) = yτ(c(σ, γ)eσγ)

= c(σ, γ)c(σγ, τ)eσγτ

ñ b(σ)σ(yτ)(eγ) = b(σ)(σyτσ´1(eγ))

= b(σ)(σyτ(eγ))

= b(σ)(σ(c(γ, τ)eγτ))

= b(σ)(σ(c(γ, τ))eγτ)

= σ(c(γ, τ))b(σ)eγτ

= σ(c(γ, τ))c(σ, γτ)eσγτ

6 yτb(σ)(eγ) = b(σ)σ(yτ)(eγ)

This allows us to define

(E, G, c) ÝÑ (End(V b E))G,b

xuσ ÞÝÑ vx ˝ yσ

Thus,

H1(G, PGLn) ÝÑ H2(G, Eˆ) – Br(E/F)
A ; [Aop]

Operations. What we want to do is: given two algebras given by a co-cycle of PGL, how
do we add them? We will use that fact that

End(V)b End(W) – End(V bW),

which makes more sense when we think about matrices. Given a P GL(V) and b P

GL(V), then we define ab b P GL(V bW) by ab b(vb w) = a(v)b b(w). This induces
a homomorphism from GL(V)ˆGL(W) ÝÑ GL(V bW) of groups. If ā P PGL(V), b̄ P
PGL(W), then we can similarly define āb b̄ = ab b P PGL(V bW), however, this is not
a homomorphism since we are moding out by two different scalars so our map is not
well-defined. If we think about

GL(V)

k times
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

GL(V)ˆ ¨ ¨ ¨ ˆGL(V) GL(Vbk)∆

then we do get an induced homomorphism, namely

PGL(V) ÝÑ PGL(Vbk)

ā ÞÝÑ ab ab ¨ ¨ ¨ b a
[A] ÞÝÑ k[A]

Given ā P Z1(G, PGL(VbE)), b̄ P Z1(G, PGL(WbE)), we can define āb b̄ P Z1(G, PGL(Vb
W b E)) by āb b̄(σ) = ā(σ)b b̄(σ). We remark that āb b̄ is a co-cycle and describes the
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action of the Galois group G on Ab B, where A corresponds to a and similarly for b. So

[A] Ø a P H1(G, PGL(V))

[B] Ø b P H1(G, PGL(W))

ab b Ø [Ab B] P H1(G, PGL(V bW))

Torsion in the Brauer Group. Suppose we have b P Z1(G. PGL(VbE)) and V = W1‘W2
such that

b(σ) =
(

b1(σ) 0
0 b2(σ)

)
is given in some block form with bi(σ) P GL(Wi b E). Then

Bb(σ, τ) =

(
Bb1(σ, τ) 0

0 Bb2(σ, τ)

)
in particular, since Bb(σ, τ) is a scalar matrix, which means that for some λ P Eˆ, λ = Bbi
i.e., Bbi = Bb. Then b̄i P H1(G, PGL(Wi)) represents something Brauer equivalent to b.
Recall that the wedge power of the vector space V,

k
ľ

V Ă

k
â

V Ą Rest kV.

Considering

PGL(V) PGL
(
Âk V

)
= PGL

(
Źk V ‘Rest kV

)

(
˚ ˚

0 ˚

) λ
. . .

λ


B

B´1

i.e., the kth power is replaced by something in H1(G, PGL(
Źk, V)). If n = dim V, then

the nth power represents H1(G, PGL(
Źn V)) = H1(G, PGL(E)) = tFu. We have torsion

because n [A] = 0 implies that per A| ind A.
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7. LECTURE (2/20): PRIMARY DECOMPOSITION AND SOME INVOLUTIONS

Primary Decomposition. If M is some group, m P M and torsion, then

m = m1m2 . . . mr, (7.0.0.6)
where mi’s commute with prime order and mi has prime power order. This is equivalent
to defining a homomorphism

Z ÝÑ M
1 ÞÝÑ m

Z�Z/nZ ÝÑ M
where m is a n-torsion element where n =

śs
i=1 pri

i . The Chinese Remainder theorem
says that the above map factors through Z/nZ =

Às
i=1 Z/pri

i Z. If we consider a tuple
(a1, . . . , as) in the direct sum and set bi to be the tuple with 1 in the ith component and 0
elsewhere, we can write 1 =

ř

aibi. Hence

m = m
ř

aibi =
s
ź

i=1

maibi ,

which implies that |maibi | divides pri
i .

Proposition 7.1. If D is a division algebra, then if we re-write [D] = [D1] + ¨ ¨ ¨+ [Ds] in terms
of its primary components, then

D = D1 b ¨ ¨ ¨ bDs.

Backtracking a Bit. If E/F is any field extension, then

Br(F) ÝÑ Br(E)
[A] ÞÝÑ [Ab E]

is a group homomorphism since (Ab B)b E – (Ab E)bE (Bb E). Recall E splits A if
and only if [A] P ker(Br(F)Ñ Br(E)) = Br(E/F).

Proposition 7.2. If E/F is a splitting field for A, then there exists B v A such that E is a maxi-
mal sub-field of B.6

Proof. We know that E acts on itself by left multiplication, so E ãÑ EndF(F) = Mn(F). It
is clear that E Ă AbMn(F) Ą CAbMn(F)(E). Then

CAbMn(F)(E) v AbMn(F)b E v Ab E,

6We simply want to prove the converse of Proposition 5.5.
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and we note that CAbMn(F)(E) – Mdeg A(E) Ą Mdeg A(F). We want to compute

E Ă CAbMn(F)(Mdeg A(F)).

We know that CAbMn(F)(Mdeg A(F)) is a CSA equivalent to A and the degree is equal to
n.

�

Corollary 7.3. Every CSA is equivalent to a crossed product.

Proof. Give D choose L Ă D a maximal separable subfield. Let E/L be the Galois closure,
then E b D = E bL (L bF D), so D v B. Hence E Ă B is a maximal sub-field, so [D] P
Br(E/F).

�

Alternate Characterization of Index.

Proposition 7.4. Let A/F be a CSA /F, then

ind A = min t[E : F] : E/F finite with Ab E splitu
= gcd t[E : F] : E/F finite with Ab E splitu
= min t[E : F] : E/F finite, separable with Ab E splitu
= gcd t[E : F] : E/F finite, separable with Ab E splitu

Proof. Suppose that E/F splits A. Without lose of generality, suppose that A is a division
algebra. There must be some B v A with E Ă B is a maximal sub-field by Proposition
7.2. We can conclude that B – Mm(A), which implies that [E : F] = m ¨ deg A = m ind A.
Therefore, ind A|[E : F] for every splitting field E/F. In other words, we cannot get any
smaller, and the smallest size we can get is the size of the index. In particular, there
exists maximal separable sub-field of any division algebra, so we have shown that above
statements.

�

We want to relate the index and period a more precise manner. We note that if [A] P
Br(F) and E/F, then per Ab E|per A.

Lemma 7.5. As with the period, we have that ind(Ab E)| ind A.

Proof. Suppose that K Ă A is a maximal separable sub-field and A a division algebra.
Consider the diagram:

KE

K E

F
ind A
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Now KE/E is a splitting field for AE and the index [KE : E] divides ind A. Thus, we have
that

ind(Ab E)|[KE : E]| ind A.
�

Therefore, the index and the period can drop when we tensor up, which can be further
seen by Corollary 5.3.

Lemma 7.6. If E/F is a finite field extension, then ind A| ind(Ab E)[E : F].

Proof. Let L/E split Ab E with [L : E] = ind(Ab E), then L/F splits A. Hence ind A|[L :
F] = [L : E][E : F] = ind(Ab E)[E : F] by Proposition 7.4.

�

Corollary 7.7. If E/F is relatively prime to ind A, then ind A = ind(Ab E).

Lemma 7.8. If E/F is separable and [E : F] is relatively prime to deg A, then per(A b E) =
per(A).

Proof. Omit for the time being.
�

Lemma 7.9. Let A have period n = pk, then as A has index a prime power.

Proof. Let F ãÑ E ãÑ L where L/F is a Galois closure and E/F a splitting field

L

E K

F

p

Galois closure

md
primes to p

Lemma 7.8 says that ind(AbK) = ind A. Since L/K splits AbK, we have that ind(AbK)
is a p -power.

�

From Proposition 7.1, the pi-primary part Di of D has index pi-power. We know that
if E/F is a maximal sub-field for D, then E/F splits Di so ind Di|[E : F] and it must be a
pi-power. Hence ind D =

śs
i=1 pts

i and ind Di|p
ti
i .

If ind Di ă pti
i , then

Â

Di is smaller than the degree of D, which cannot happen since
D has minimal degree in Brauer class. Thus, ind Di = pti

i , which implies that D and the
tensor product of the Di’s have the same degree; therefore,

D –

s
â

i=1
Di,
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hence we have proved Proposition 7.1.
Given a vector space with a symmetric bi-linear form (V, b), so

b : V bV ÝÑ F,

where b(v, w) = b(w, v). We want to say that this induces some structure on the matrix
algebra. We will need the assumption that b is non-degenerate i.e., if

V ÝÑ V_

v ÞÝÑ b(v, ‚)

is an isomorphism. Recall that the standard inner product on Fn, then b(v, w) = vtw, then
if b(Tv, w) = (Tv)tw = vtTtw = b(v, Ttw), so the matrix moves through the form by
the transpose operation. Similarly, given some general b on V/F and T P End(V), then
consider

w ÞÝÑ b(w, T(‚) P V_.
By non-degeneracy, b(w, T(‚)) = b(v, ‚) for some v.

Definition 7.10. An involution on a CSA A/F is a anti-homomorphism τ : A – Aop with
τ2 = IdA.

Definition 7.11. We define τb to be

τb(T)(w) = v,

where v is as above. We have that b(w, Tu) = b(τb(T)w, u), so τ P End(V). We call τb the
adjoint involution of b

Remark 7.12. One should check that τb is well-defined i.e., τb(T) P End(V), an anti-
homomorphism, and has period 2.

Recall that given a bi-linear form, we can define an associated quadratic form by

qb(x) = b(x, x) (7.12.0.7)
Hence qb is a degree 2 homogeneous polynomial. Given q a quadratic form, we can re-
cover a symmetric bi-linear form

b̃q(x, y) = q(x + y)´ q(x)´ q(y).

One can check that
b̃qb = 2b,

so in a field of characteristic not equal to 2, bq = b̃q/2. Thus we have a bijective corre-
spondence between symmetric bi-linear forms and quadratic forms.

We want to answer the following questions in the upcoming lectures:

(1) To what extend is b (or q) determined by τb?
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(2) Does every involution on End(V) come from bi-linear forms?7

(3) When do CSA’s that are non-split have involutions?
(4) What structural properties of quadratic forms carry over to CSA’s with involution?

The goal is to understand groups that are defined by algebraic equations. Suppose
we have coordinates x1, . . . , xn on some vector space V = Fn. Let G( f ) be equal to the
set of equations for some polynomial equations on V with the group law described by
polynomial functions.

Example 7.12.1. Consider GLn(F) = (det ‰ 0). Similarly, orthogonal matrices On(F) =
 

TTt = 1
(

.

We will look at connected groups with no subgroups that are normal, connected, and
defined by equations f1, . . . , fn = 0; we will refer to these are simple groups. Note that
GLn(F) is not simple since the scalar diagonal matrices are normal and connected, how-
ever, SLn(F) is simple. The orthogonal group fails to be simple since it has two compo-
nents, but the special orthogonal SOn(F) is simple when characteristic is not 2.

An Bn Cn Dn G2 F4 E6

SLn+1, SU SOn+1 Sp2n SO2n ‚ ‚ ‚

The punchline is that simple linear algebraic groups of types A, B, C, D except D4 come
from CSA’s with involutions. In answering (1) above, we will see that τb = τ1b ðñ b1 = λb
for some λ P F. Notice that (3) is trivial for split CSA’s since we can just take the transpose.
For the non-split case, if τ is an involution on A, then since it is an anti-automorphism, τ :
A – Aop, hence Ab A – Ab Aop – 1, which is split. Thus, per[A] = 2 or 1. Conversely,
if per A|2, then there exists involutions. We will prove this using Galois Descent (5).

8. LECTURE (2/27): INVOLUTIONS AND OTHER ANTI-AUTOMORPHISMS

Bi-linear forms on a vector space. Let V be a finite dimensional vector space.

7We can show that this is not necessarily true since we will need skew-symmetric forms.
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Definition 8.1. A bi-linear form b is a function b : V ˆV Ñ F that is linear in each variable
i.e., b factors through

V ˆV F

V bV

Definition 8.2. b is symmetric if b(v, w) = b(w, v) i.e., b factors through

V ˆV F

V bV/xvbw´wbwy

Hence b is symmetric if and only if b P (Sym2 B)ˆ.

Definition 8.3. b is left-nondegenerate if

V ÝÑ Vˆ

v ÞÝÑ b(v, ‚)

is injective, equivalently isomorphic. Similarly, for right-nondegenerate.

Definition 8.4. (V, b), (V1, b1) is isometric if there exists φ : V – V1 such that b(v, w) =
b1(φ(v), φ(w)).

Definition 8.5. b, b1 are right-isometric if there exists φ : V – V such that b(v, w) =
b1(v, φ(w)). Similarly, for left-isometric.

Example 8.5.1. Consider the inner product, x‚y on Fn where xx, yy = xty. This is both left
and right non-degenerate.

Lemma 8.6. If b,b1 are both left non-degenerate, then they are left isometric.

Proof. For all x, b1(x, ‚) P Vˆ and can be mapped to b(φx, ‚) for some φx. We can check
that φ is a linear map. Hence b1(x, y) = b(φx, y) and similarly, b(x, y) = b1(ψx, y). Thus,

b(x, y) = b1(ψx, y)
= b(φψx, y)

ñ x = φψx

So, φψ = Id, so φ is an isomorphism.
�

33



In particular, any left non-degenerate b

b(x, y) = xφx, yy = (Mtx)ty = xtMy (8.6.0.1)

where φ = Mt for some matrix. We call this matrix M the Gram matrix for b. Therefore,
b left non-degenerate implies that for all x, xtM ‰ 0 if and only if M non-singular if and
only if b is right non-degenerate. Thus,

non-degenerate = right non-degenerate = left non-degenerate

Given b bi-linear on V, we can form σL
b , σR

b , the left and right adjoint anti automor-
phisms. Here’s the idea, we want to define

b(x, Ty) = b(σL
b (T)x, y) and b(Tx, y) = b(x, σR

b (T)y).
To define this explicitly, we look at

b(x, T(‚)) = b(σL
b (T)x, ‚)

It is easy to check that

σL
b (T1 + T2) = σL

b (T1) + σL
b (T2)

σL
b (T1T2) = σL

b (T2)σ
L
b (T1)

σR
b ˝ σL

b = σR
b ˝ σL

b = End(V)

Given b, b1 both non-degenerate, we know that b1(x, y) = b(x, uy). We want to relate the
adjoint automorphisms:

b1(x, Ty) = b1(σL
b1(T)x, y)

= b(σL
b1(Tx), uy)

= b(σL
b (u)σ

L
b1(T)x, y)

ñ b(x, uTy) = b(σL
b (u)σ

L
b1(T)x, y)

b(σL
b (uT)x, y) = b(σL

b (u)σ
L
b1(T)x, y)

ñ σL
b (uT) = σL

b (u)σ
L
b1(T)

ñ uT = σL´1

b (σL
b (u)σ

L
b1(T))

= σL´1

b (σL
b1(T))u

innu(T) = uTu´1

innu(T) = σL´1

b (σL
b1(T))

Hence we conclude by stating that

(σL
b1) = σL

b ˝ innu where b1(x, y) = b(x, uy). (8.6.0.2)
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We have shown a map between

tNon-degenerate bi-linear formsu ÝÑ tAnti-automorphismsu

b(x, y) = xtMy ÞÝÑ b1(x, y) = b(x, uy) = xtMuy

If σb = σb1 , then by the above we have that innM = innMu if and only if innu = Id if and
only if u P Z(End(V)) = f . Thus, σb = σb1 if and only if there exists some λ such that for
every y b1(x, y) = b(x, λy) = λb(x, y).

Definition 8.7. b, b1 are homethetic if b = λb1 for some λ P Fˆ. Hence

tNon-degenerate, homethetic class of bi-linear formsu Ø tAnti-automorphimsu

Given any σ in the latter group, then t ˝ σ P Aut(End(V)) there exists a M such that
t ˝ σ = innM so σ = t ˝ innM, thus σ is adjoint to b so b(x, y) = xtMy.

Involutions.

Definition 8.8. A bilinear form b is

(1) symmetric if b(x, y) = b(y, x)
(2) skew if b(x, y) = ´b(y, x)
(3) alternating if b(x, x) = 0 for all x.

In each case, we have b(x, y) = εb(y, x) where ε2 = 1; we will refer to this as ε - symmet-
ric. If b satisfies one of the above conditions, σ its adjoint then

b(x, Ty) = b(σTx, y) = εb(y, σTx)

= εb(σ2tY, x) = ε2(b(x, σ2Ty))

= b(x, σ2Ty)

Definition 8.9. A is a ring and σ : A Ñ A an anti-autormorphism is an involution of A is
σ2 = Id. If A is a CSA then we say that σ is of the first kind if σ|Z(A) = Id.

If not, then σ(F) Ă F, then σ(λ)a = σ(λ)σ2a = σ(σ(a)λ). So σ|F is an order 2 non-trivial
automorphim, then F/Fσ is a Galois group with group C2 = xσ|Fy. We will call this an
involution of the second kind.

Definition 8.10. A matrix T P Mn(F) is symmetrized if T = S + ST for some S and skew-
symmetrized if T = S´ ST for some S.
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Example 8.10.1. A symmetric matrix is (
a b
b a

)
A symmetrized matrix is (

2a b
b 2a

)
A natural question is do all involutions come as adjoints to symmetric or skew symmet-

ric bi-linear forms? The answer is yes and we will see why shortly. If σ P Inv f (End(V))
is of the first kind, then σ = σb for some bi-linear b. By (8.6.0.2), σ = σb = t ˝ innM. Thus,

Id = σ2 = t ˝ innM ˝t ˝ innM

σ2(T) = (M(MTM´1)tM´1)t

= (M(Mt´1
TtMt)M´1)t

= (Mt´1
)MTM´1Mt

= inn
(Mt´1 M T

Then Mt´1
M P Fˆ, so Mt = εM. Hence M = Mtt

= (εM)t = ε2M = M, so we have
answered our above question.

Lemma 8.11. Suppose M is the Gram matrix for some bi-linear form b, then
(1) b is symmetric if and only if M is symmetric,
(2) b is skew if and only if M is skew,
(3) b is alternating if and only if M is skew-symmetrized.

We will need the following result:

Lemma 8.12. M is skew’d if and only if M is skew and diagonal entries all 0.

Proof. The only non-obvious part is (3). If M is skew’d, then b is alternating. Lemma 8.12
shows that it is clear that b is alternating.

�

Definition 8.13. If A is a CSA /F, σ an involution on A of the first kind, we say that σ is
orthogonal if σF = adjoint for symmetric and sympletic if σF = adjoint for skew.

Gram/Schmitt and Darboux.

Lemma 8.14. If ω is non-degenerate, alternating, then we can write

V = xx1, y1y K xx2, y2y K ¨ ¨ ¨ K xxn, yny,

where W1 K W2 = W1 bW2 and ω(w1, w2) = 0 for all wi P Wi and ω(xi, yi) = 1.

Proof. Proceed by induction on dim V. Choose x1 P Vz t0u and non-degenerate y1 such
that ω(x1, y1) = 1 ‰ 0. Then xx, yy X xx, yyK = 0. By induction hypothesis, we are done.

�
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Proposition 8.15. If b is ε-symmetric, then we can write

V = W K Valt

where Valt is alternating and W = xz1y K xz2y K ¨ ¨ ¨ xzny and b(zi, zi) = ai ‰ 0.

Proof. It is standard to write W = xa1, . . . , any. We induce on the dimension of V. Either
V is alternating or there exists z1 such that b(z1, z1) = a1 ‰ 0, so xz1y X xz1y

K = 0, so
V = xz1y K xz1y

K.
�

If ω is alternating, then after a change of basis it looks like the above perp decomposi-
tion. Moreover, the Gram matrix is of the form

Ω =



0 1
´1 0 1

´1 0 1
. . . . . . . . .

´1 0 1
´1 0


We remark that det M = 1.

The Pfaffian. Classically, the Pfaffian is the square root of the determinant. Let M be
a skew symmetrized invertible matrix which corresponds to an alternating form ω and
M = Ω after a change of basis i.e.,

ω(xm, y) = (φx)tΩφy.

For notation’s sake, let At be the matrix for φ, then we can write the above as follows:

w(x, y) = xt AtΩAx

so M = AtΩA. Moreover, det(M) = det(A)2.

Definition 8.16. We define the Pfaffian of M as Pf(M) = det(A) i.e., Pf(M)2 = det M.
General non-sense implies that Pf(M) is a rational function in the entries of M. Moreover,
if Pf(M)2 is a polynomial function, then Pf(M) is a polynomial.

If (V, ω) is a space with an alternating form, we want to define something symmetrized
for (End, ω) i.e., a T = S + σω(S). Write ω(x, y) = xtvy then vt = ´v and σω = innv ˝t.
Then

T = S + σω(S) = S + innV(St)

= S + VStV´1 = (SV + VSt)V´1

= (SV ´ (SV)t)V´1
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The characteristic polynomial of T,

χT(x) = det(x´ T) = det(x´ (SV ´ (SV)t)V´1)

= det(XV ´ (SV ´ (SV)t))(det V)´1

= Pf(XV ´ (SV ´ (SV)t))2(Pf(V)2)´1

Since χT(x) is a square of a polynomial, we can take a square root.

Definition 8.17. The Pfaffian characteristic polynomial is define by the monic square root
above. The Pfaffian norm is the last coefficient and the Pfaffian trace is the second coef-
ficient.

Theorem 8.18 (Pfaffian-Cayley-Hamilton). If T is symmetrized for ω an alternating form,
then Pf χT(x) = 0.

Given a degree five algebra A over F. Given E Ă A maximal, how Galois is it? More
precisely, consider the Galois closure, the Galois group must be a transitive subgroup of
S5. If A is of degree 5, does there exists E Ă A maximal such that the Galois closure does
not satisfy G – S5.

Theorem 8.19 (Rowen). If deg A = 8 and per A|2, then there exists a C2 ˆ C2 ˆ C2 Galois
maximal subgroup.

If per A = 2 and ind = 2n, then there exists a half maximal sub-field where F ãÑ L ãÑ E
and [E : L] = 2. Characteristics of the algebras in terms of index, period, and degrees can
provide interesting results involving the arithmetic of fields.

Transitioning to Algebras.

Lemma 8.20. Let (V, b) is a space with bi-linear form and dim V = n. Then b is symmetric if and
only if Sym(End(V), σb) has dimension n(n + 1)/2. b is skew if and only if Skw(End(V), σb)
has dimension n(n + 1)/2.

Proof. Consider the isomorphism

Sym(Mn(F), t) r– Symε(A, σ)

TM´1
ÐÝß T,

where M is the Gram matrix for b. �

Theorem 8.21 (Existence of Involutions). Given a CSA /F A with period 2, there exists σ P
Inv f (A) that is orthogonal.
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Proof. Since A – H1(F, PGL(V)). The action of GL(V) on (Sym2 V)ˆ gives rise to a map
GL Ñ GL(Sym2 V)ˆ. Moreover,

0 0

Fˆ Fˆ

GL(V) GL((Sym2(V))ˆ)

PGL(V) PGL((Sym2(V))ˆ)

0 0

x ÞÝÑx´2

Taking cohomology of the columns gives the diagram

H1(G, GL(V b E)) H1(G, PGL(Vb)) = [A] H2(G, Fˆ)

H1(GL(Sym2(V b E)ˆ)) H1(PGL(Sym2(V b E)ˆ)) H2(G, Fˆ)

¨(´2)

�
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