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1. LECTURE (1/9): WEDDERBURN-ARTIN THEORY

Preliminaries. We will make a few conventions:

(1) Ring will always be associative and unital, but not necessarily commutative;

(2) Ring homomorphisms will be unital (i.e., f(1) = 1) and the zero ring is allowed;

(3) Modules will be left or right and for notations sake we will denote a left R-module
M as g M and a right S-module N as Ng.

Definition 1.1. Given rings R, S an R — S bi-module M is an Ableian group both with left
R-module and right S-module structure satisfying:
r(ms) = (rm)s VreR,se€S, me M.
Note that we will denote an R — S bi-module P by gPs.
Structure Theory. Let R be a ring.
Definition 1.2. A left R-module P is simple if it has no proper non-zero sub-modules.
Definition 1.3. If P is a left R-module and X < P, then
anng(x) = {re R:rx =0Vx e X}.

Remark 1.4. anng(x) is always a left ideal and is 2-sided if X = P.
Definition 1.5. We will denote an ideal I of R by I < R. A left ideal will be denoted by
I <y R and similarly, I <, R for a right ideal. An ideal I < R is said to be left primitive if
it is of the form I = anng(P), where P is simple.
Proposition 1.6. Suppose P is a non-zero right R-module, then the following are equivalent:

(1) P is simple;

(2) mR = P for all m € P\ {0},

(3) P = R/ for some I <, R maximal.
Proof. (1) = (2). Since mR is a non-zero ideal and P is simple, mR = P. (2) = (3).
Consider the map R— P defined by r — mr. By the first isomorphism theorem, we have
that R/ ker =~ P. Furthermore, ker has to be maximal, else R/ ker is not simple. (3) = (1).
This is a direct consequence of the Lattice Isomorphism theorem. U

Definition 1.7. A left R-module P is semi-simple if

n
P>~@P whereeach P, is simple.
i=1
Proposition 1.8. Let A be an algebra over a field F and M a semi-simple left A-module which is
finite dimensional as a F-vector space. If P < M is a sub-module, then

(1) P is semi-simple;
(2) M/ P is semi-simple;
(3) there exists P' = M such that M ~ P ® P+,

Remark 1.9. If F is a field, then an F-algebra is a ring A together with a vector space
structure such that for every A € F,a,b € A, we have

(Aa)b = A(ab) = a(AD),
hence F — Z(A).



Proof. (1). Let P ¢ N < M be sub-modules and write M = N® N’ = P@® P’ for some
N’ and P’. We need to find Q such that N = P® Q. Let Q = P’ n N. This is a sub-module
of N so weneed toshow that N =P+ Qand PnQ = 0. Letn € N, then n € M so we can
write n = a + b for some uniquely determined a € P,b € P’. Since P ¢ N, we have that
b=mn—ae N,and hence b € Q. Thus, we have n € P + Q and consequently, N = P + Q.
To show that other claim, let n € P n Q, then n € P’ as well. By choice of P and P/, if
nePandne P, thenn =0,and hence Pn Q = 0.

(2). To show that M/P is semi-simple, choose Q < M/P that is that maximal semi-
simple sub-module. Suppose that Q # M/P. &#&®Jackson: Ask Bastian about proof.  [J

Definition 1.10. Let R be a ring. Define
Jr(R) = ﬂ all maximal right ideals
J/(R) = ﬂ all maximal left ideals .

Remark 1.11. Note that annihilators of elements in a simple R-module are the same as
maximal right ideals in R. Hence we have that

J+(R) = ﬂ all annihilators of simple R-modules
= ﬂ anng (M)

MeMod R
M simple

Thus, we have that J,(R) < R.

Lemma 1.12. Suppose that A is a finite dimensional F-algebra, then A, is semi-simple if and
only if [,(A) = 0.

Proof. (=). First, we write Ay = @7:1 P; where P; are simple. Let 13] = @]- i P We can

easily see that 13] is a maximal right ideal. By Definition 1.10, we have that
n
J:(A)= [ P;=0.
j=1

(«<). Suppose that J;(A) = 0. Since A is a finite dimensional vector space over F, there
exists a finite collection of maximal ideals I; such that (| I; = 0. By Proposition 1.6, we
have that for each i, A/I; is simple, hence @, A/I; is semi-simple by definition. Since
(1 1; = 0, we have that the map
A— PA/]
1

is injective, hence we can consider A as a sub-module of a semi-simple module. We have
our desired result by Proposition 1.8. U

Definition 1.13. An element r € R is left-invertible if there exists s € R such that sr = 1
and is right-invertible if rs = 1.

Lemma 1.14. Let A be a finite dimensional algebra over F. An element a € A is right invertible
if and only if a is left invertible.
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Proof. Pick a € A. Consider the linear transformation of F-vector spaces
p:A — A
b — ab

If a is right invertible, then ¢ is surjective. Indeed, since if ax = 1, then for y € A,
¢$(xy) = axy = y. If ¢ is bijective, then det(T) # 0, where T is the matrix associated to ¢
for some choice of basis. Let

xr(t) ="+ at" -+

be the characteristic polynomial of T, so ¢p = + det(T). By the Cayley-Hamilton theorem,
we have that x7(T) = 0, which implies that

(" P 4cy1a" 2+ Ho)a

1.

So we have found a left inverse to a that is also a right inverse due to commutativity. [
Lemma 1.15. Let R bearingand v,s,t € R such that sr =1 = rt, then s = t.

Definition 1.16. Let R be a ring and r € R. We say that r is left quasi-regular if 1 — r is left
invertible. We will say that r is quasi-regular if 1 — r is invertible.

Lemma 1.17. Let I <, R such that all elements of I are right quasi-regular. Then all elements of
I are quasi-regular.

Proof. Let x € I. We want to show that 1 — x has a left inverse. We know that there
exists an element s € R such that (1 —x)s = 1. Lety = 1—-sands = 1—y. Then
(1-x)(1-y) =1=1-x—y+ xy, which implies that xy —x —y = 0,s0y = xy — x.
Since x € I, y must also be in I. By assumption, y is right quasi-regular (1 — y is right
invertible) but 1 — y is also left invertible with inverse 1 — x. Then (1 —-y)(1—x) =1, so
(1 — x) is left invertible, and thus x is quasi-regular. O

Lemma 1.18. Let x € [,(R), then x is quasi-regular.

Proof. By Lemma 1.17, it is enough to show that x is right quasi-regular for all x € J,(R).
If x € J;(R), then x is an element of all maximal ideals of R. Hence 1 — x is not an element
of any maximal ideal in R, so (1 — x)R = R. Thus there exists some s € R such that
(1—x)s=1. O

Lemma 1.19. Suppose that I < R such that all elements are quasi-reqular. Then I < ],(R) and
Ic ]g(R)

Proof. Suppose that K is a maximal right ideal. To show that K > I, consider K + I. If
I € K, thenK+1=R,soK+x =1forke Kand x € I. This tells us that K = 1 — x and

since 1 — x is invertible, we have that K is invertible, but this contradicts our assumption
that K is a maximal right ideal; therefore, I — K. ]

Corollary 1.20. [,(R) is equal to the unique maximal ideal with respect to the property that each
of its elements is quasi-reqular. Moreover, we have that J,(R) = J,(R), so we will denote this

ideal by J(R).

Definition 1.21. A ring R is called semi-primitive if J(R) = 0.
5



Theorem 1.22 (Schur’s Lemma). Let P be a simple right R-module and D = Endg(Pg), then
D is a division ring.

Remark 1.23. D acts on P on the left, and P has a natural D — R bi-modules structure.
Indeed, for f € Endgr(Pr), we have

f(pr) = f(p)r.

Proof. Suppose that f € D\ {0}. We want to show that f is invertible. Consider ker(f) and
im(f), which are sub-modules of P as right R-modules. Since P # 0, ker(f) # P, which
implies that ker(f) = 0 since P is simple. Hence im(f) # 0, so im(f) = P by the same
logic. Thus f is a bijection. Let f~! denote the inverse map of f. It is easily verified that
f~!is also R-linear, hence f~! € D. Moreover, D is a division ring. U

Endomorphisms of Semi-simple Modules. Let M, N be semi-simple R-modules, so we
can represent them as a direct sum of simple R-modules M;, resp. N;. If f : M — Nisa
right R-modules homomorphism, then f; = f| M; can be represented as a tuple

(frj fajr- -0 f11,7)

where f;; : Mj — N;. From this notation, it is clear that we can represent f as a n x m

matrix
fix o fim
f=1: &
fn,l fn,m
i.e.,
HomR(Ml,Nl) HomR(Ml,Nm)
Homg (Mg, Nr) = : : :
Hompg(M,, Ny) --- Hompg(M;, Ny)

with standard matrix multiplication by composition.

Theorem 1.24 (Artin- Wedderburn). Let A be a finite dimensional algebra over a field and
J(A) = 0. Then we may write A = @}, Pf " with P; mutually non-isomorphic and A =

(Mg, (D;)) " where D; = End(P;) a division ring.

Proof. Note that A =~ Ends(A4) and J(A) = 0 implies that A4 = Pidi by Lemma 1.12.

Schur’s Lemma (Lemma 1.22) says that D; = End4((P;)4) is a division algebra. We can

write

Homg (P, Pf1) --. Homg(P{", Pir)

Endy(Aa) = z : :

H I dn pdn
omg(P,", P;') --- Homg(P,",P;")
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We can decompose this further by noting that

-

HomR(Pi, P]) ce HomR(PZ-, P])
Homg (P, P') = d; 4 : : :

HomR(P,-,P]-) HomR(Pi,P]-)

\ d;

/

Since P; is simple, Hom(P;, P;) = 0 unless i = j. Note that in this case we have that

Hom(Pi, Pi) = End(Pi) = Di/ SO

Mg, (Dy)

Enda(Aa) = MaD2)
Mg, (D n)

therefore, Ends(As) = My, (D1) x -+ x My, (Dy). O

Corollary 1.25. If A is a finite dimensional, simple F algebra, then A =~ M, (D) where D is a
division algebra over F and Z(A) = Z(D).

Proof. Since J(A) < Aand 1 ¢ J(A), we have that J(A) = 0 since A simple. By Theorem
??, we have that A = (M,(D;))*". Since each factor M. (D;) is an ideal and A is simple,
we have that n = 1, and hence we have our desired decomposition.

For the second statement, using matrix representations for Z(A) and Z(D), we can con-
struct an isomorphism Z(D) — Z(A) sending d — d - I,. O

Definition 1.26. An F-algebra A is called a central simple algebra over F (CSA/F) if A is
simple and Z(A) = F.

2. LECTURE (1/16): TENSORS AND CENTRALIZERS

Today we will discuss tensors and centralizers.

Tensor Products. Let R, S, T be rings. Let g Mg, s Nt bi-module, and a map to g Pr
p: MxN-—P
We say that ¢ is R — S — T linear if

(1) foralln e N, m — ¢(m, n) is left R-module homomorphism;
(2) forall m e N, n — ¢(m, n) is right T-module homomorphism;

(3) ¢(ns, m) = p(n,sm).

Definition 2.1. Given Mg, sNt, we say that a bi-module grPr together witha R—S —T

linear map M x N — P is a tensor product of M and N over Sisforall M x N — Q
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R — S — T linear there exists a unique factorization:

MxN—

A
r .-
s
s
s
s
-

Definition 2.2. We define M ®g N to be the quotient of the free Abelian group generated
by M x N by the subgroup generated by the relations

(m,ny+mny) = (m,ny)+ (m,ny)
(my+mp,n) = (my,n)+ (my,n)
(ms,n) = (n,sn)

In the case where R commutative, left modules have right module structure and vice
versa. In this way, Mg ®gr rN has an R-modules structure; so when R commutative, we
will refer to a R — R — R linear map as R bi-linear. We have the notation that the ordered
pair (m, n) is the equivalence class m ® n, which are called simple tensors. We note that
elements in M ®g N are linear combinations of simple tensors.

In the case of tensors over fields, a lot of the structure is much more transparent and
simpler.

Proposition 2.3. If V, W are vector space over a field F with bases {v;}, {w;}, then VQ W is a
vector space with basis given by {v; @ w;} .

Proof. Clearly, this basis spans. To see independence, define a function ¢ ; : V. x W — F
which maps (3] «;v;, >, Bjwj) — aip;. This map is bi-linear, and the induced map on
tensors is a group homomorphism. Hence we have linear independence. U

If V/F is some vector space L/F field extension, then L ®f V is an L-vector space with
basis {1 ® v;} where {v;} is a basis for V. Similarly, given a linear transformation T : V —
W, then

L®T: LV — LW
where LQ T(x®v) — x® T(v). If we identify the bases of V and L® V, we see that T and
L ® T have the “same” matrix. Thus

L®(kerT) =ker(L®T),

and similarly, for cokernel, image, etc.

Tensor Products of Algebras. If A, B are F-algebras, then A ® B is naturally an F-algebra
since

(a®b)(d ®@b') = (ad’ @bb")
Note that A, B are not necessarily commutative rings, so we are somewhat forcing this
construction. In fact, something funny is actually happening. Inside AQ B, A®1and 1®
B are sub-algebras that are isomorphic to A and B, respectively. In particular, A ® 1 com-
mutes with 1 ® B.



Proposition 2.4. Suppose A, B are F-algebras, then for any F-algebra C, there is a bijection
between the following two sets:

{Hom(A®B,C)} < {A — C, B — C such that images of A and B commute in C}

Proof. The inclusion < is clear by our previous comment. For the reverse inclusion, A ® B
is generated as an algebraby A®1and 1®B. So given ¢; : A — C, ¢ : B — C, then
p:A®B — Cisdefined by a®b — ¢1(a) - ¢a(b). O

Given A, B F-algebras and 4 Mp we have homomorphisms A — Endp(M) and B? —
Endr(M). Moreover, there images commute i.e., the images of A, B°P commute so (am)b =

a(mb). So we get a map
A® B — Endp(M)

which defined a left A ® B°P-modules structure on M. Thus, we have a natural equiva-
lence of the categories A — B bi-modules and left A ® B°P-modules.

Commutators. Given A/F some algebra, and A < A, then

Ca(A)={aeA:al =AaVae A},
and C4(A) = Z(A). Suppose that M is a right A-module, then we have a homomorphism
A% — Endp(M). If we let C = Cgng,(m)(A°P) = End4(M). To preserve our sanity, we
will regard M as a left C-module. This gives M the structure of a C — A bi-module.

Theorem 2.5 (Double Centralizer Theorem Warm-Up). Let B be an F-algebra, M a faithful,
semi-simple right B-module, finitely dimensional over F. Let E = Endp(M), C = Cg(B°P), then
B°P = Cg(C) = Cg(Cg(BP)).

Proof. Let ¢ € Cg(C). Choose {my,...,m,} a basis for M/F. Write N = @"M > w =
(mq,...,my). Since M is semi-simple, so N is semi-simple. This allows us to write

N = wB@® N’ for some N’
Set 71 : N — N’ be a projection (right B-module map) that factors through wB. Since
7t € Endg(N) = My (Endp(M)) = My (Cgng,(m)(BYF)) = My (C).
Set ¢®" : N — N doing ¢ on each entry. Then w¢®" = (nw)¢p®" = m(wep®") =
nt(wb) € wB. The general principle is the following: My({-}) commute with “scalar ma-
trices” whose entries commute with {-}, which is why we can move the w inside U

Our next goal is to prove that:
Theorem 2.6. If A isa CSA/F, then A ®p AP =~ Endp(A).

Proof. Notice that A isan A — A b-module, so it defines a map A ® A°? — Endp(A). The
question is why is this bijective. Suppose that {4;} is a baiss for A and (A°P). We wan to
see when
Z € @ 4a; 2, 0e End(A)

More abstractly, if we have A, B commuting sub-algebras of E. Let a; € A, bj € B be
linearly independent over F, then a;b; is independent in E. Since E is an A — A bi-module,
so A ® A°P left module. E is also a right B-module, in particular A ® A°P — B bi-module.
AisaCSA, soitis asimple A ® A°P-module, and End ggaor(A) = F = Z(A). Thus

CEndy(4) (Cendp(a) (IM(A® AP))) = Cgngp(a)(F) = Endp(A).
9



Then Theorem 2.5 tells us that im(A ® A°) = Endf(A), which is what we desired.! [
Thus, if A isa CSA, then A® A°P ~ Endr(A) = M,,(F), where n = dimp(A).
Proposition 2.7. A is a CSA if and only if there exists B such that A® B =~ My, (F).

Proof. (=). This is clear. («<).If A® B =~ M,(F), note that M, (F) are central simple. If
I < A, then I ® B < My, (F) by dimension counting. If I is non-trivial, so is I ® B, hence A
is simple. Thus, Z(A) = Cy,(r)(A) n A. We know that B = Cyy, (r)(a), Which implies that
A ® Cp,(r)(A) = My(F). But we also know that A® B =~ M, (F) by assumption, hence
we have B = Cy, (r)(A). Thus Z(A) = Cy,(p(A)nA=BnA=F. O

Proposition 2.8. A isa CSA/F if and only if for all field extensions L/ F such that L@p A CSA/L
ifand only if F @ A =~ M, (F).

Proof. Aisa CSA = A® A%® =~ M, (F) = (AQ®Fr A°?)®¢ L =~ M, (L). Notice that we
can re-write (A ®r AP)®r L = (AQ®L)® (A°’ ® L), so by Proposition 2.7, we have
that A® L is a CSA for all L. In particular, A ®f F is a CSA. Thus by Theorem 1.24,
A®r F ~ M,,(D) for some finite dimensional division algebra D/F. Hence for alld € D*,
F[d]/F is a finite extension of F. Since it is a finite extension, d € F, which implies that
D =Fie, A®rF = M,(F).

Now suppose that A ®¢ F = M, (F). So A must be simple, otherwise, [® F < AQF =
M,,(F). Now we want to show that Z(A® F) = Z(A) @ F. This is true by considering the
kernel of a linear map and just extending scalars. U

Definition 2.9. If A is a CSA, then deg A = /dimp(A). This makes sense since F ® A =

M,,(F) has dimension 2.

Definition 2.10. By Theorem 1.24, A ~ M, (D), and we can check that Z(D) = F, hence D
is a CSA, which we will call a central division algebra (CDA). We define the index of A
as ind(A) = deg(D), where D is the underlying division algebra. We know that this is
unique up to isomorphism, since D = End 4 (P) , where P is a simple right A-module.

Remark 2.11. Note that
dimp(A) = m? dimg(D)
so that deg A = mdeg D = mind A, and in particular, ind A| deg A.

Brauer Equivalence.

Definition 2.12. CSA’s A, B are Brauer equivalent A «~ B if and only if there exists 7, s such
that M, (A) =~ M;(B). This essentially says that M,(M,(Dy4)) =~ M;(M,,(Dg)) , which
implies that D4 =~ Dp. Alternatively,

A v B <= underlying divison algebras are isomorphic.

N.B. If A, B/F are CSA’s, then A ® B is also a CSA. The “cheap” way to prove this is to
just tensor over F and see what happens.

I There was a lot of confusion on this proof. Review Danny’s online notes for valid proof.
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Definition 2.13. The Brauer group Br(F) is the group of Brauer equivalence classes of
CSA’s over F with operation [A] + [B] = [A ®f B]. The identity element is [F], and note
that

[A] + [A%P] = [A®F A%P] = [Mdim, 4 (F)] = [F].

Definition 2.14. The exponent of A (or period of A) is the order of [A] in Br(F).
N.B. We will show that per A|ind A.

3. LECTURE (1/23): NOETHER-SKOLEM AND EXAMPLES

Last time, we had a number of ways to characterize CSA’s. A CSA if and only if there
exists B such that A® B € M,,(F) if and only if A® A°P =~ End(A) if and only if A®p L =~
M,,(F) for some L/F if and only if A® F =~ M,,(F) if adn only if for every CSA B, A® B
is a CSA (similarly for field extensions).

If A,B CSA, then A® B is a CSA. In Definition 2.12, we defined the relation that gave
rise to the Brauer group. Moreover, in Definition 2.13, we gave the Brauer group a group
structure.

Lemma 3.1. A/F isa CSA and B/F simple, finite dimensional, then A ® B is simple.

Proof. If L = Z(B), then B/L is a CSA. Hence AQr B ~ A®r (L®. B) ~ (A®rL)®L B
i.e., we are tensoring over two CSA’s. Thus, we have a CSA /L, in particular, simple. [

Lemma 3.2. Let A = B® C CSA’s, then C = C4(B).
Proof. By definition, everything in C centralizes A, so C = C4(B). But
dimp(Ca(B)) = dimp(Ca(B) ® F) = dimp(C o (B®F))
Without lose of generality, B = M, (F),C = M,,(F). Hence
A =M, (F) @My, (F) = My (M, (F)).
So we want to look at
CMm(Mn(f))(Mn (F)) = Mm(CM,,(f) My, (F)) = M (Z(My (F))) = My, (F) =C

by Lemma 3.4.1 of Danny’s notes.
O

Theorem 3.3 (Noether-Skolem). Suppose that A/ F isa CSA, B, B’ — A is a simple sub-algebra
and ¥ : B = B'. Then there exists a € A* such that ¢ (b) = aba—1.

N.B. Think about inner automorphisms of matrices.

Proof. So B <~ A,B' < Aand A < A® A% = Endr(A) = Endp(V) where V = A2V
isa A — A bi-module, so it is a B — A module or B ® A°P left module. Since B is simple

2We want to do this to remind ourselves that A is a vector space and also for notational reasons.
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and A°P CSA, we have B ® AP is simple, so it has a unique simple left module. V is
determined by its dimension as a B ® A°P module since it can be regarded as a B® A°P
module in two different ways by two different actions, (¢(b) ®a)(v) and (b®a)(v). These
two modules are isomorphic, that is to say that there exists ¢ : V =~ V such that ¢((b ®
a') (b)) = (p(b) ®a")(¢(v)).

Note that ¢ € End(V)* = End(A)* = (A® A°)* by the sandwich map. Hence
¢ is a right A-module map i.e., ¢ € Cagaor(A°?) = A® 1. This means that ¢ is left-
multiplication by a € A*. Then foralla € A*,leta’ =1, then

a@1(b®1()) = y(b)e1a®1(v))

abv = y(b)av
ab = y(b)a
aba~! = u(b)

Theorem 3.4 (Double Centralizer Theorem Step 3). Let A bea CSA, B = A simple, then
(dimp(Ca(B)))(dimp(B)) = dimp(A).

Proof. We want to look at C4(B). Since B is simple, B is a CSA/L where L = Z(B). Since

L—B— A— A®A°° = Endr(A). We remark that A is a left L-vector space, B acts

on A as L-linear maps, so B < End;(A) < Endp(A). We now look at Cagaor(B) =
Ca(B) ® A°. Since L < B, then Cyga0p (B) acts on A via L-linear maps. Hence

Cagacr(B) = Cgndp(a)(B) = Cgnd, (a)(B)-
So Theorem 4.1 tells us that
EndL(A) = BQ®r CEndL(B) = BQ® (B)

Now we want to compute the dimensions,

. 2
dimy (Endp(A)) = dimg(A)* = (dlm—F(A)) ,

[L: F]
_ dimp (B
) dlmFC nd dimF C ndr(A (B)
dimp (Cgna; (4)(B)) = L :EF]L(B) - [LE:;]( )
_ dimp Cagacr(B) _ (dimpCa(B))dimp A dimp Cy(B) ® AP
- [L: ] - [L: ] B [L: F]

Thus

(o) -t (2mgemn)
4

Existence of Maximal Subfields.

Definition 3.5. If A/F is a CSA, F < E < A is a sub-field, we say that E is a maximal
sub-field if [E : F| = deg A.
12



Theorem 3.6. If A is a division algebra, then there exists maximal and separable sub-fields.

Proof. We will show in the case when F is infinite. Given some a € A, look at F(a). We
know that [F(a) : F] < n = deg A, so it is spanned by {1,4,4%,...,a" "'} . We want these
to be independent over F, so have an n dimension extension as well as the polynomial
satisfied by a of deg n to be separable. This polynomial at F is ), the characteristic poly-
nomial. If x, has distinct roots, then it will be minimal, hence the unique polynomial of
degree n satisfied by az. The discriminant of the polynomial gives a polynomial in the
coefficients which are polynomials in the coordinates of 2 and is non-vanishing if distinct
eigenvalues.

Lemma 3.7. Suppose V is a finite dimensional vector space over F, F < L, and F is infinite. If
f € Llxy,...,x,| non-constant, then there exists ay, ...,a, € F, then f(@) # 0

Proof. For n = 1, any polynomial has only finitely many zeros if it is non-zero. Then we
induct and just consider k(x1, ..., X,_1)[xx]. O

Hence by Lemma 3.7, we have our desired polynomial. u

Remark 3.8. From Theorem 3.4,
If CA(E) 2 E, then add another element to get a commutative sub-algebra. Indeed, if

dimpE < 4/dimp(A) = deg A we can always get a bigger field. If F finite, then all
extensions are separable, so we are done.

Structure and Examples.

Definition 3.9. A quaternion algebra is a degree 2 CSA. The structure is given by M, (F)
or D a division algebra.

There exists quadratic separable sub-fields if division algebra (and usually with ma-
trices.) Let E/F be of degree 2, then E acts on itself by left multiplication, and E —
Endr(E) = M;y(F). Suppose A is a quadratic extension, where char F # 2, then E =
F(y/a), and let i = /a. Then we have an automorphism of E/F where i — —i. So Theo-
rem 3.3, says that there exists j € A* such that jij~! = —i, so ij = —ji. This says that j
commutes with i and ;.

Lemma 3.10. We have that A = F ® Fi ® Fi ® Fij.

Proof. As a left F(i) space, 1 does not generated and dimp;y A = 2 and j ¢ F(i) for com-

mutativity reasons. So this implies that A = F(i) ® F(i)j. Since j> commutes with ij, we
have j?2 € Z(A) = F,so j> = b € F. Hence A is generated by i,j such that i = a € F*, j?> =
b e F* and ij = —ji. We can also deduce our usually anti-commutativity properties that
we expect in a quaternion algebra.

Conversely, given any a,b € F*, we can define (a,b/F) to be the algebra above; this is
a CSA since it is a quaternion algebra. It is enough to show that (a,b/F) works. If we
replace i ~— i/+/a = iand j — j/+/b = . Now we have > = 1 = j?, hence we want to
show that (1,1/F) is a CSA. Note that (1,1/F) =~ Endp(F[i]) via F[i] — left multiplication
and j — Galois action i — —i. It is an exercise to show that this map is an injection. 0
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Symbol Algebras. Given A/F a CSA of degree n. Suppose that there exists E < A a
maximal sub-field where E = F({/a).®> Let ¢ € Gal(E/F) be a generator via c(x) = {u
where & = {/a and { is a primitive n'" root of unity. Theorem 3.3, there exists some g € A*
such that faf~! = wa.

Lemma 3.11. We can write
A=E®EB®ER® --®ER L.

Proof. This is true via the linear independence of characters. Consider the action of p
on A via conjugation, then Ef' = E as a vector space over E or over F. We have that
a(xp)a! = {~'xp', so EB' consists of eigenvectors from conjugacy by a with value .
This implies that 8" is central, hence " = b e F*. So
A= P Fup

ije{1,...,n}
where fa = (ap and a” = aand B" = b. 4
Definition 3.12. If we define the symbol algebra, denoted by (a, b);, to be

@ Fa'p

ije{l,...n}
where B = (ap and a" = a and p" = b, then (a,b); isa CSA/F.
What if we don’t assume Kummer extension? What about just a Galois extension?

Cyclic Algebras. Assume that E/F is cyclic with Gal(E/F) = (o) where ¢" = Idg. Sup-

pose that E c A is a maximal sub-field, we can choose y € A such that ux = o(x)u for all
x € E via Theorem 3.3, then

A=E®QEu@Ep*® --@Eu" .
Like before, it will follow that y" =be F = Z(A).
Definition 3.13. Then we say that A = A(E, 0, b) is a cyclic algebra.

It turns out that over a number field, all CSA’s are of this form. There is a result due
to Albert, that shows that these all CSA’s are not cyclic. If E/F is an arbitrary Galois
extension and E = A is maximal. For every ¢ € G, there exists ug € A such that ugx =

g(x)ug so that A = Py Eug.

4. LECTURE (1/30): CROSSED PRODUCTS

Last time, we did some warm-ups to the Double Centralizer Theorem (Theorem 2.5
and Theorem 3.4) i.e., if B = Endf(V) where B is simple, then Cgng,.(v)(Cena,(v)B) = B

3We call this a cyclic Kummer extension.
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and if A ~ B C all CSA/F, then C = Cy4(B). As well as the Noether-Skolem Theorem
(Theorem 3.3).
Theorem 4.1 (Double Centralizer Theorem Warm-up 3). If B < A are CSA/F, then

(1) Ca(B)isa CSA/F,

(2) A= BC4(B) = B®Cu(B).
Proof. If (2) holds, then A simple implies C4(B) is simple. If we look at 1 ® Z(C4(B)) —
Z(A) = F, hence C4(B) is central. To prove (2), we consider the map

B®Cs(B) — A.

Without lose of generality, F = F, in particular, B = M, (F) and A = Endp(V). Since
B is simple, there exists a simple module, and since F" is one such module, it is our
unique one. If B ¢ A, then V is a B-module, which implies that V = (F")". Hence
A = Muu(F) = My, (M, (F)).

Now we can compute C4(B) = Cuy,(m,(r)) (Mn(F)), where M, (F) are block scalar
matrices. Note that Cp;, (w1, (r))(Mn(F)) = Mm(Z(Mn(F))) M, (F). Thus we have

My (F) ® My, (F) = My (F).
t

Theorem 4.2 (Full-on Double Centralizer Theorem ). Let B < A where A isa CSA/F and B
is simple. We have the following:

(1) C4(B) is simple;

(2) (dimp B)(dimp(C(B))) = dimp(A) (Theorem 3.4);

(3) Ca(Ca(B)) = B;

(4) If Bisa CSA/F, then A ~ B® C4(B) (Theorem 4.1).

Proof. To prove (3), we can think of B~ A — A® A° = Endp(A). By Theorem 2.5, we
know that B = Cgndy(4)(Cend,(a)(B)). We note that
Cindy(4)(B) = Cagacr(B) = Ca(B) ® AP,
and for the second centralizer
Cagar(Ca(B) @ AP) = Ca(Ca(B))®1 =B.
(1) follows from the fact that C4ga00 (B) = Ca(B) ® AP is simple. O

Suppose A is a CSA/F and E ¢ A maximal sub-field i.e., [E : F] = degA and E/F
is Galois with Galois group G. In this case, if o € G, there exists u, € A* such that
uy x u;t = o(x) for x € E*. We will show that

A= Eu,.

ceG
Lemma 4.3. These Noether-Skolem elements u, are independent of E.

Proof. If not, then choose some minimal dependence relation

Z Xollg =
= Z XoUgl = 2 Xe0 (V) Ugy.

4We will call these elements us, Noether-Skolem elements.
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This implies that Ax, = x,0(y) for all ¢ for some fixed A i.e., o(y) = A for all o. Thus
y € F, so by dimension count A = Eu,. If u, and v, are both Noether-Skolem for ¢ € G,
then u,v;'x = xu,v;! for x € E. We note that u,v;! € C4(E) = E by Double Centralizer
Theorem, so v, = Ay u, for some A, € E*. O

Conversely, such a v, is Noether-Skolem for ¢. Notice that u,u; and u,; are both
Noether-Skolem for 01, so ugsur = ¢(0, T)ugr for some c(o,7) € E*. We can also check
associativity meaning that u, (uruy) = (ugur)uy. We will find that

c(o,t)c(ot,y) =c(o, ty)o(c(o,v)). (4.3.0.1)

Definition 4.4. We call this the 2-cocycle condition for a functionc: G x G — E* if
c(o,t)c(ot,v) =c(o, ty)o(c(o,v)).
Definition 4.5. If E/F is Galois, ¢ : G x G — E* a 2-cocycle condition, then define (E, G, c)

to be the crossed product algebra, which we denote by @ Eu, with multiplication de-
fined by

(xug) (yur) = x0(y)c(o, T)ugr.
Proposition 4.6. A = (E, G, c) as above isa CSA/F.
Proof. If A—B, then E — B since E is simple and u, — v, € B are Noether-Skolem
in B for E. Due to the independence of B, then we have injection. Note that Z(A) <

Ca(E) = E and note that C4 ({tt¢},.c) N E = F due to the Galois action, so we have that
A is central. O

Question 1. Whenis (E, G, c) = (E,G,¢')?

By Noether-Skolem, the isomorphism must preserve E so ¢(E) = E. Hence ¢(u,) is
a Noether-Skolem in (E, G, c"). Since (E,G,c) = @ Euy and (E, G, ") = @ Euy, hence
¢(uy) = xyu,. The homorphism condition says that
¢(c(o, Tttgr) = (0, T)Xorttyr = @(uotiz) = @(ue) @(ur) = (xouy) (x<u7),
which implies that
c(0,T)xgr = x50 (x7)c' (0, T)
-1

e, c(o,T) = x;0(x7)x,-¢ (0, T) for some elements o € E* for each ¢ € G.
Definition 4.7. We say that ¢, ¢’ are cohomologous if there exists b : G — E* such that
c(o,7) = b(o)o(b(t))b(cr) 1 (0, 7).
Definition 4.8. Set
B2(G,E*) = {f .G x G — EX|f = b(0")o(b(7))b(c7)"! for some b : G — EX}
and
Z*(G,E*) = {f : G x G —> E*|2 cocyles} .
These are groups via point-wise multiplication. We define
_ Z*(G,E®)
- B%(G,EX)’
16
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Proposition 4.9. H%(G, E*) is in bijection with isomorphism classes if CSA/ F such that E = A
is maximal.

To approach the group structure, we need to learn about idempotents.

Idempotents.
Definition 4.10. We call an element e € A an idempotent if ¢* = e.

If e is central, then it is clear that e(1 —¢) = 0 and (1 —e)? = 1 — e. Now
A=A-1=A(e+(1—-e)) = Aex A(1—e).
The point is that e € eA and (1 —e) € (1 —e)A act as identities, hence (ae)(b(1 —¢)) =
abe(1 —e) = 0. Writing a ring A = A; x Aj is equivalent to finding idempotents i.e.,
identity elements in A; and A,. If e is not central, f = 1 —eande+ f = 1. So we can
write
1A1=(e+ f)A(e+ f) = eAe+eAf + fAe+ fAf

where eAe and fAf are rings with identities e and f.

If we think of

A =End(44) =End(eA®fA) = (Hom(eA,fA) End(fA)

We claim that this decomposition falls in line with A = eAe @ eAf @ fAe® fAf. Suppose
we take (eaf)(eb) = 0 and (eaf)(fb) € eA. We note that

-

eAf — (0 Hom(](‘)A eA))
SoeAe =Endy(eA)and eAf = Homu(fA,eA), and so on and so on. This is called Pierce
decomposition. So as a matrix algebra we have

A= (car 74)

Let’s assume that A is a CSA/F and let ¢ € A be an idempotent. So we have eAe =
Ends(eA) = Endg(P") = My(D) and A = Ends(A4) = Ends(P") = M, (D), where
D = End4(P4), which implies that eAe «~ A under the Brauer equivalence. So idempo-
tents give us a way to recognize Brauer equivalence.

If we take two cross product algebras, (E,G,c) ® (E,G,c’) «~ (E,G,cc’). We want an
idempotent in the tensor product that will allow us to “chop” or deduce our equivalence.
Note that

E®E = E®F[x)/f(x) = E[)/f(x) = [ | B/ (x —a) = [ ] Elx)/ (x — o(w) = [ ] E,

oeG ceG

End(eA)  Hom(fA, eA)>

so we have that

where « is just some root. This says that there are idempotents in the product, namely

ec € EQE, where 0 € G. The punchline is that e; will work, but we will need to prove it.
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Let’s look at the map
E[x]
x—o(a)
a®b — aoc(b)
1®a — x
(1®z)e;, — Eo(a)
(0(a)@1)e, —> o(a)
Hence (1®a)E; = (0(z) ®1)es. Let (E,G,¢) = A3 uyand (E,G,c') = A’ s ul,. Lete = ¢;
so eAe 5 ew, where w, = uy ® ul,, which does exists. We note that EQE ¢ A® A’. We
want to see how the ¢ and the Noether-Skolem elements interact,
(1Qupe(1®u, H(1ex) = (1Qu; Ne(1®0(x))(1Qu,)
(1@u; e(o(x)®1)(1@u,)
= (1®u; e(1®uy)(o(x)®1).
This did what e, should do. Note that conjugation takes idempotents to idempotents, so
(1®u; ) is in fact idempotent. We can note that (1, ® ), )e = e(uy ® 1)), so if we let
ws = (e @ul,). Then we have that ew, = e’w, = ewye € eA® A’e. We want eA ® A'e as
(E,G,c). Since eEQE =~ E via the map e(E®1).
We want to show that if we have
ewe(x®@1)e = e(up@ul)(x®1)e
e(o(x)®1)(ur@ul)e
e(o(x)®1)wge

ERE — E

lle

So ew,’s are Noether-Skolem elements, so
eADAe> P e(EQ1)ew,.

ceG

For equality, let e(xu, ® yu’ )e € eA ® A’e. We can re-write this as so,
et @yi)e = e(xy)(1s 1)
— e(x@y) (o1 1) (1 @ 0 e
(xy ®1)e(uguy ®1)ewTe
= (w@DAe(uou 1 @1)e
( )A

= (xy@DA(ugu1®1)e, 16
0 ifo#1
AMe otherwise.
0 ifo#1
(xy®1)(A®1)eAewse € P, e e(E®@1)ew, otherwise.

since u;! = Au__1 forsome A € E*. Hence eA® A'e ~ AQ A’ =~ (E, G, cc'). Danny checks
the cocycle condition, however, I will not repeat this computation. Thus we have shown
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that the operation in H? = Br group operation i.e.,
Br(E/F) :={[A] : A CSA/F with E ¢ A maximal}

is a subgroup of Br(F) = H?(G, E*). We sometimes call this group Br(E/F) the relative
Brauer group of F.

5. LECTURE (2/6): FIRST AND SECOND COHOMOLOGY GROUPS

Last time we defined that Br(E/F) is the set of equivalence classes of CSA/F with
E maximal sub-field and E/F is Galois. We showed that his is actually a group, namely,
Br(E/F) =~ H*(G,E*) = Z%(G,E*)/B?(G, E*). The mapping from H>(G, E*) to Br(E/F)
was defined by ¢ — (E, G, ¢), then crossed product algebra as defined in 4.5. We want to
relate splitting fields to maximal subfields.

Definition 5.1. We say that E/F splits if A®r E =~ M, (E).

We always have splitting fields, namely the algebraic closure; moreover, there are split-
ting fields which are finite extensions.

Lemma 5.2. If A CSA /F, E c A subfield, then C4(E) ~ A®r E.
Proof. Note that E — A ® A°? = Endr A. We look at
Endg(A) = Cgng,(a)(E) = A®Cpop(E) = A®F E®g Caor(E)
= (AQ®r E) ® Cacr(E) = (A®r E) @ Ca(E)P.
Since Endg(A) is a split E-algebra, thus
[AQE]—[Ca(E)] =0€BrE.
U
Corollary 5.3. IfE < D D CSA /F, then (ind D®E)[E : F| = ind D.

Proof. By Theorem 4.2, we have that dimp Cp(E)|E : F] = dimp D. By taking the dimen-
sion over E, we have

degCp(E)?[E: F]* = (degD)?

[
degCp(E)[E: F] = (degD)=1indD
= indCp(E)[E: F] = indD
(indD®E)[E: f] = indD.

O

Remark 5.4. If E < A is a maximal subfield, then A ® E is split. Indeed, since AQ E -
Ca(E) = E by Theorem 4.2.

Proposition 5.5. If A CSA /F, EQ A =~ M, (F), and [E : F| = deg A = n, then E is isomor-
phic to a maximal subfield of A.
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Proof. Note that E — Endp(E) = M, (F) — A® M,(F). Now we compute
~ M, (F) = E® My(F)

lle

Cagm,(r)(E)

We have the map
¢:EQM,(F) — AQ®M,(F)
M,(F) ~— B
By Noether-Skolem, we acn replace ¢ by ¢ composed with an inner automorphism so
that B ~ 1® M, (F). So now note that Crga, () (Ma(F)) = E = E® My (F), hence ¢(E) <
Ceem, (F)(Mn(F))E = A®1. O

If we have a splitting field for our algebra with appropriate dimension, then it must a
maximal field.

Corollary 5.6. Let A/F bea CSA /F, then [A] € Br(E/F) for some E/F is Galois.

Proof. Write A = M,,(D), where [A] = [D]. WLOG A is a division algebra. We know that
D has a maximal separable subfield L < D. Let E/F be the Galois closure of L/F. We
claim that E < M, (D). We have that E — End (E) = Mg.;)(L) via left-multiplication. If

we look at D @ Mg.1)(F) > L ® Mg (F) = Mig.j(L) = E. Note that the left hand side
has degree equal to [E : F] sincedeg D[E : L] = [L: F][E : L] = [E : F]. By Lemma 5.5, we
have that E is a maximal subfield of D ® Mg.;(F). Therefore, [A] = [D] € Br(E/F). U

Galois Descent. We fix E/F a G-Galois extension. A isa CSA /F if and only if AQ E =
M, (E) for some E/F Galois. We can interpret this as saying that A is a “twiseted form”
of a matrix algebra.

Definition 5.7. Given an algebra A/F, we say that B/F is a twisted form of A if A®r E =
B ®r E for some E/F separable and Galois.”

Descent is the process of going from E to F i.e., descending back down. We use that fact
that E = F where G is the Galois group. The idea is as follows: given A® E, G acts on the
E-part and the invariatns give A. The issue here is that the isomorphism in Definition 5.7
does not respect the Galois action, meaning that different actions could produce different
isomorphisms.

Definition 5.8. A semi-linear action of G on an E-vector space V is an action of Gon V (as
F-linear transformations) such that
o(xv) =0(x)o(v) VxeEvelV. (5.8.0.2)

Theorem 5.9. There is an equivalence of categories
{F-vector spaces} «— {E-vector spaces with semi-linear action}
V — V®rE
WE — W

>We could make an equivalent definition for any algebraic structure. We leave this vague on purpose.
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If V is an E-space with semi-linear action, we get an action of (E,G,1) on V where
E = @ Eu, and ugur = uyr and ugx = o(x)uy via (xuy)(v) = xo(v). We can check
well-definedness as so
(xug)(yur)(v) = xus(yt(v)) = xo(y)ot(v)
= (x0(y)our) (0) = x0(Y)ge(0) = x0(y)oT() = xo(y)oT(v)
Actually, a semi-linear action on U is a (E, G, 1) module structure u,v. Hence (E, G, 1) has
a unique simple module E. If V is semi-linear, then V =~ E" and vice versa. To see the

equivalence of Theorem 5.9, we notice that the unique simple E goes to F and the F goes
back to E, and these are unique.

If V is some semi-linear space, so a (E, G, 1) module, then V& =~ F ®(k,c1) V, where £/
is the unique simple (E, G, 1) module. We hope to describe this later.

Definition 5.10. If V, W are semi-linear spaces, then a semi-linear morphismis ¢ : V — W
is an F linear map such that ¢(c(v)) = ce(v).

Under the equivalence of Theorem 5.9, we can see that
PFe; =W — PEe; = WRE — (WRE)° = P E; ~ PFe
In the reverse direction, we know that

V=0@Ee, — PE%; =P Fe; — D(FRFE)e; = P Ee;.

We have shown that there is a natural isomorphism of objects, so now we must consider
arrows. If ¢ : W — W is an F- linear map, then p®@E: WQ E — W' ® E. Then

AQx — ¢(a) ®x

I I
@0 (x) — p(a) @0 ()
i.e., 0 acts on the left component. If ¢ : V — V' is semi-linear, then ¢ induces a map via
restriction to V& — (V)C, so the arrows correspond as well.

If V, W are semi-linear spaces, how should we define the action on V @ W? It is sort
of induced on us, meaning V = V®E and W = W ® E. Hence

VerW=(VRE)® WQ®E) = (V®W)QE.
We can check the compatibility of the action by consider the diagram:

(VOE)® (WRE) +—— (VOW)®E
VoW

Hence the answer to our previous question is that ¢ must act on the right component.
Thus we have an equivalence of categories with tensors.
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Definition 5.11. A semi-linear action of G on an algebra A/E is a map from G — Aut(A/F)
such that o(xa) = o(x)o(a) forall x € E,a € A. In particular, o(ab) = o(a)o(b) implies
that A® A — A is semi-linear.

Theorem 5.9 says that semi-linear algebras over E correspond to F-algebras by taking
invariants and tensoring up. We now want to classify these semi-linear mappings. If A
is some interesting algebra, we want to find all twisted forms A. If B is a twisted form
and we have an isomorphism ¢ : B E — A ® E. We can define a new action where
op(a) = ¢(c(¢~'(a))) where a € A® E. How do these actions compare?

We can compute 0~ !(0p(x)) € Autg(A ® E) and we can check that o~ (op(xa)) =
xo~1(og(a)). For similar reasons, og o0~ ! € Autg(A® E) so 03 = a, o o for some a, €
Autp(A ® E). We can check that ot = (0T)p; moreover that a,r = a,0(a;), which is
called the 1-cocycle or equivalently a(0t) = a(c)o(at) a cross homomorphism.

Theorem 5.12. If B is a twisted form of A, there there exists a map G to Autp(A ® E) which is
a 1-cocycle and such that B = (A ® E)S where the subscript means A ® E with the new action
0a(a) = ay0o(a). Conversely, every such 1-cocycle gives a twisted form.

Proof. Given a 1-cocycle a : G — Aut(A ®E), let’s check that the action of (A®E), is
semi-linear. We want to know that 0,7,(¢) = (07),(a) and 0,(xa) = o(x)0,(x). Using
the assumption that a is a 1-cocycle and doing a cohomology calculation, we can verify
these results. Once we picked an isomorphism A ® E — B ® E, then everything else
was well-defined. If we pick different ¢’s then how is everything related. We can find
that a, and a/, are cohomologous if a/, = ba,(cb~'c~1) for some b € Aut(A®E). The
equivalence classes under cohomology are in bijective correspondence with isomorphism

classes of semi-linear actions and therefore, in bijection with twisted forms of A.
O

Definition 5.13. We define H(G, Aut(A ® E)) is the set of these cohomology classes i.e.,
cocycles up to equivalence. The base point of this pointed set is 4, = 1, which refers to A
as a twisted algebra of itself A.

6. LECTURE (2/13): COHOMOLOGY AND THE CONNECTING MAP

Let E/F be G Galois and some vector space V/F. We can tensor up to V ® E with a
G action on the second component. We note that V =~ (V ® E)® by hitting the tensor
with G and seeing what doesn’t move. Recall Theorem 5.9. Suppose that V = F", then
VQ®E = E" and we can write Endg(V ® E) = E™. By thinking about the action of G
coordinate wise on Endg(V ® E), we can deduce that some o € Gactson f € Endg(V®E)
by o(f) = 0o foo~!. For example, if f = xe;j such that

o(f)(ex) = o(f(ex)) = o(xejjer) = o(x0jke;) = o(x)djke;-
Give a “model” algebra Ag/F, we can ask to classify all of the A/F such that A®

E =~ Ap®E, in particular, we are looking for CSA /F that split over E of degree n. If
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¢ : AQE — Ap®E, then we can transport the action of G on the left to the right i.e., we
want to analyze the Galois action on E. Hence

o-x=¢op(x). (6.0.0.3)
Ifweset b(0) = pop~lo~! € Autg(Ap® E), then we can rewrite (6.0.0.3) as
o-x=b(c)oo(x). (6.0.0.4)

If we set b(ct) = b(0)o(b(1)), then we can say that 0o (Tox) = 07 ox. We can also
modify ¢ by hitting Ag x E by an automorphism a. Set ¢’ = a~!¢. The new action will be

(P/O_(P’—lo_’fl = a lgo(alg) o
= a’lcpmj)’laa’l
= u‘lgbacp_la_laaa_
= a b(0)o(a),

1

hence we say that
bt < V(o) =a'b(c)o(a) for some a € Autg(Ag®E).
Definition 6.1. Suppose that X is a group with action of G.Then we define
ZYHG,X) ={b: G — X|b(ct) = b(0)o(b(7))}

and b « b’ if there exist some x € X such that b'(¢) = x~'b(c)o(x) for all o € G. We define

H!(G, X) to be the set of equivalence classes of the above form.
In particular, we know that

CSA /F of degree n with splitting field E/F «— H (G, Autg(M,(E)))
Note that GL,(E)— Autg(M,(E)) with conjugation by T and the kernel of this map are
the central matrices which are the scalarsi.e., E*.

Definition 6.2. We define PGL,(E) = GL,(E)/E*. From Definition 6.1, we have that
H!'(G, Autg(M,(E))) ~ H(G,PGL,(E)).

Recall that (E, G,¢) = @,.c Eus where ur = ¢(0, 7)uyr. For this course, we say that
given uy, ug, uy, we have that
c(o,T)e(ot,7) = c(o, Ty)o(c(T, 7))
i.e., the two co-cycle condition. If we altered uy to vy = b(0)ug. This alteration does
give an equivalence between the co-cycles by setting

d(o,7) = b(o)o(b(7))b(et) e(oT), (6.2.0.5)

which leads us to the notion of cohomologus. We say that ¢ «~ c if and only if 3b that
satisfies (6.2.0.5). The equivalence classes for a group H*(G,E*) = Br(E/F).

Thinking about H? Abstractly. Abstractly, we can think of H? by letting X be an Abelian
group with G action. We set

Z%(G,X) ={c:Gx G — X| c((;ér)c(ar,’y) =c(o,ty)o(c(T, 7))}



We set C1(G, X) as the arrows from G to X. For a b € C!(G, X), we say that the boundary
is
ob(o,T) =b(0)o(b(7))

Then we have 2( )
Z°(G, X
H?(G,X) = =12,

(GX) = 526.%)
If X is a set with G action, then

H(G,X) = Z2%G,X) = {x e X : 0(x) = x} = XC.

The Long Exact Sequences.
Theorem 6.3. Given a SES
1—A—B—C—1
of groups with G action. Taking cohomology gives a long exact sequence

1—— H%G,A) —— H°(G,B) —— H’(G, 0)

;o

HY(G,A) —— HY(G,B) —— H'(G,C)

;o

H*(G,A) —— H?*(G,B) —— H*(G,C)

and we stop at a certain point if A < Z(B) or unless B is Abelian.

Remark 6.4. If X, Y, Z are pointed sets, we say that X S, Yy £, Zifand only if ker g =

im f as pointed sets.

What are the transgression maps when the groups are not Abelian? For ), we can take
this for granted. We want to look at 6;. Assume that A = Z(B) choose a ¢ € Z!(G,C).
Pick some b € C1(G,C), then b(c) € B which happens to map to c(c’) € A. We look that

ob(ot) = b(o)o(b(t))b(oT) "t € C3(G, B),
hence ob(c, ) = a(c,7) € C?(G, A). We want to show that
a(o,t)a(ot,y) = a(o, ty)o(a(t,v)).
Writing everything out with a(c, ) = b(¢)o(b(7))b(cT) !

We want to specialize to the sequence

1—E* —GL(V®E) — PGL(V®E) — 1.
Taking cohomology, we have

H!'(G,PGL(V®E)) — H?(G,E*) = Br(E/F).
24
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Let’s fix n = [E : F| = dim V. We claim that under these assumptions, the above map
is surjective. Pick ¢ € Z?(G,E*). Let e, be a basis for V induced by G. We define b e
CY(G,GL(V®E)) via b(c)(er) = c(c, T)esr. Note that

b(e)o(b(t))(ey) = b(o)(ob
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This implies that modulo E*, we have that
b(e) o(b(7)) = b(eT),

hence ob = cisaliftif b € Z!(G,PGL). What we have said is that if we tweak the standard
Galois action on Endg(V ® E) by the b € Z!(G, PGL), then the image of b under d; isc from
(E, G, c) via 6;. We want to determine the algebra from b. We want to take the invariants
of the tweaked Galois action in order to recover this algebra, where we define the new
action for f € Endg(V®E) as

o(f) =b(e)oo(f) = b(e) oo (f) ob(e) !
where b is a representative of b. We want to find elements f that are invariant under the

tweaked action. Hence we can think of f +— bo(f) = b(¢) oo (f) o b(c)~!. The invariants
are a CSA and we want to compare it with (E, G, c). We set

Endp(VQE)S? = {f : b(0)o(f) = fb(o) Vo e G}.
If o € G, define y, € Endp(V®E) via ys(er) = ¢(1,0)err. If x € E, we define vy €
Endr(V®E) via vx(er) = t(x)er. We note that these are fixed. Indeed, let’s look at
b(o)o(vy) = vyb(0). Since we have defined these notions on a basis, it suffices to consider

vxb(0)(er) = vi(c(o,T)esr)
,T)vx(egr)
,T)oT(x)esr
o(vx (0™ 131)))
xer))
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Similary, we can show that y,, namely, y.b(c) = b(c)o(yt). We can check this
y<b(0)(ey) = yc(c(o,7)eoy)
= c(o,7)c (U'Y/ T)eoyr

= b(c)o(y:)(ey) = blo ey))
= b(o

Il Il
Las
o S

N— N N N N N
)

Cy<b(o)(ey) = b(o)o
This allows us to define
(E,G,c) — (End(VQ®E))%*
XUy +—— UxOlYgy
Thus,
H'(G,PGL,) — H?(G,E*) =~ Br(E/F)
A ~ [A%P]

Operations. What we want to do is: given two algebras given by a co-cycle of PGL, how
do we add them? We will use that fact that

End(V) @ End(W) ~ End(V® W),
which makes more sense when we think about matrices. Given a € GL(V)andb €
GL(V), then we definea®b € GL(VQW) by a®b(v®w) = a(v) ® b(w). This induces
a homomorphism from GL(V) x GL(W) — GL(V ® W) of groups. If 2 € PGL(V),b €
PGL(W), then we can similarly define a®b = a®b € PGL(V ® W), however, this is not

a homomorphism since we are moding out by two different scalars so our map is not
well-defined. If we think about

k times

A

GL(V) <2 GL(V) x - -- x GL(V) —— GL(V&)

then we do get an induced homomorphism, namely
PGL(V) — PGL(V®K)
a — a®a®---®a
[A] — k[A]
Givena e Z'(G,PGL(V®E)),be Z'(G,PGL(W®E)), we can definea®b € Z'(G,PGL(V ®

)
WQ®E))bya®b(c) = a(c) ® b(c). We remark that 2® b is a co-cycle and describes the
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action of the Galois group G on A ® B, where A corresponds to a and similarly for b. So
[A] - aeHYG,PGL(V))
[B] < beH(G,PGL(W))
i1®b < [A®B]eH!(G,PGL(V®W))

Torsion in the Brauer Group. Suppose wehaveb e Z'(G.PGL(V®E))and V = W; W,

such that
@) = ("5 i)

is given in some block form with b;(¢) € GL(W; ® E). Then
)

0.0~ ("7 )

in particular, since 0b(c, T) is a scalar matrix, which means that for some A € EX, A = db;

i.e., 0b; = 0b. Then b; € H'(G,PGL(W;)) represents something Brauer equivalent to b.
Recall that the wedge power of the vector space V,

k K
AVc®V > Resthv.

Considering

PGL(V) — PGL (@" v) = PGL < AV @ Rest kv)

671
i.e., the k™ power is replaced by something in H'(G,PGL(A*, V)). If n = dim V, then

the n" power represents H' (G,PGL(A" V)) = H'(G,PGL(E)) = {F}. We have torsion
because 1 [A] = 0 implies that per A|ind A.
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7. LECTURE (2/20): PRIMARY DECOMPOSITION AND SOME INVOLUTIONS

Primary Decomposition. If M is some group, m € M and torsion, then

m=mimy... My, (7.0.0.6)

where m;’s commute with prime order and m; has prime power order. This is equivalent
to defining a homomorphism

Z — M
1 — m

Z—Z/nZ — M
where m is a n-torsion element where n = [];_; p.’. The Chinese Remainder theorem
says that the above map factors through Z/nZ = @;_, Z/p. Z. If we consider a tuple

(a,...,as) in the direct sum and set b; to be the tuple with 1 in the i" component and 0
elsewhere, we can write 1 = > a;b;. Hence

S
m = mxfibi — Hm”ibi’
i=1
which implies that [m®" | divides p!.

Proposition 7.1. If D is a division algebra, then if we re-write [D] = [D1] + - - - + [Ds] in terms
of its primary components, then
D=D1® --®Ds.
Backtracking a Bit. If E/F is any field extension, then
Br(F) — Br(E)
Al — [A®E]

is a group homomorphism since (A® B)® E =~ (AQE) ®¢ (B® E). Recall E splits A if
and only if [A] € ker(Br(F) — Br(E)) = Br(E/F).

Proposition 7.2. If E/F is a splitting field for A, then there exists B «~ A such that E is a maxi-
mal sub-field of B.°

Proof. We know that E acts on itself by left multiplication, so E < Endp(F) = M,(F). It
is clear that E = A ® My (F) = Cagpm,(r)(E). Then

CA@M,,(F)(E) A A®MH(F)®E b A@E,

oWe simply want to prove the converse of Proposition 5.5.
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and we note that C g, (r) (E) = Maeg A(E) © Mgeg 4(F). We want to compute

Ec CA@Mn(F)(MdegA(F))'

We know that C g, (r)(Mdeg a(F)) is a CSA equivalent to A and the degree is equal to

n.
U

Corollary 7.3. Every CSA is equivalent to a crossed product.

Proof. Give D choose L © D a maximal separable subfield. Let E/ L be the Galois closure,
then EQ D = E®r (L®r D), so D «~ B. Hence E c B is a maximal sub-field, so [D] €
Br(E/F).

O

Alternate Characterization of Index.

Proposition 7.4. Let A/F bea CSA /F, then
ind A = min{[E: F]: E/F finite with A ® E split}
gcd {[E : F| : E/F finite with A ® E split}
min {[E : F| : E/F finite, separable with A ® E split}
= gcd{[E : F| : E/F finite, separable with A ® E split}

Proof. Suppose that E/F splits A. Without lose of generality, suppose that A is a division
algebra. There must be some B «~ A with E — B is a maximal sub-field by Proposition
7.2. We can conclude that B ~ M,,(A), which implies that [E : F] = m-deg A = mind A.
Therefore, ind A|[E : F| for every splitting field E/F. In other words, we cannot get any
smaller, and the smallest size we can get is the size of the index. In particular, there
exists maximal separable sub-field of any division algebra, so we have shown that above

statements.
O

We want to relate the index and period a more precise manner. We note that if [A] €
Br(F) and E/F, then per A® E| per A.

Lemma 7.5. As with the period, we have that ind(A ® E)|ind A.

Proof. Suppose that K < A is a maximal separable sub-field and A a division algebra.

Consider the diagram:
KE
K E
ink /

F
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Now KE/E is a splitting field for Ar and the index [KE : E] divides ind A. Thus, we have
that
ind(A® E)|[KE : E]|ind A.
O

Therefore, the index and the period can drop when we tensor up, which can be further
seen by Corollary 5.3.

Lemma 7.6. If E/F is a finite field extension, then ind A|ind (A ® E)|[E : F|.

Proof. Let L/E split A® E with [L : E] = ind(A®E), then L/F splits A. Hence ind A|[L :
Fl=[L:E|[E:F] =ind(A®E)[E : F] by Proposition 7.4.

O
Corollary 7.7. If E/F is relatively prime to ind A, then ind A = ind(A®E).
Lemma 7.8. If E/F is separable and [E : F] is relatively prime to deg A, then per(A®E) =
per(A).
Proof. Omit for the time being.

O

Lemma 7.9. Let A have period n = p*, then as A has index a prime power.

Proof. Let F — E — L where L/F is a Galois closure and E/F a splitting field
L

K

Galois closure E

md

N

primes to p

F

Lemma 7.8 says that ind(A® K) = ind A. Since L/K splits A® K, we have that ind (A ® K)
is a p -power.
O
From Proposition 7.1, the p;-primary part D; of D has index p;-power. We know that
if E/F is a maximal sub-field for D, then E/F splits D; so ind D;|[E : F] and it must be a
pi-power. Hence ind D = [ [}_, pfs and ind Di]plt-i.
If ind D; < pf", then (X) D; is smaller than the degree of D, which cannot happen since

D has minimal degree in Brauer class. Thus, ind D; = pf", which implies that D and the
tensor product of the D;’s have the same degree; therefore,

s
D ~ ® Di,
i=1
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hence we have proved Proposition 7.1.
Given a vector space with a symmetric bi-linear form (V,b), so

b:V®V —F,

where b(v,w) = b(w,v). We want to say that this induces some structure on the matrix
algebra. We will need the assumption that b is non-degenerate i.e., if

Vv — VY

v — b(v,e)
is an isomorphism. Recall that the standard inner product on F", then b(v, w) = viw, then
if b(To,w) = (Tv)lw = v'T'w = b(v, T'w), so the matrix moves through the form by
the transpose operation. Similarly, given some general b on V/F and T € End(V), then
consider

w— b(w, T(e) e VY.

By non-degeneracy, b(w, T(e)) = b(v, ) for some v.

Definition 7.10. An involution on a CSA A/F is a anti-homomorphism 7 : A = A°P with
T2 =1Id A-

Definition 7.11. We define T, to be
%(T)(w) =,

where v is as above. We have that b(w, Tu) = b(7t,(T)w,u), so T € End(V). We call 7, the
adjoint involution of b

Remark 7.12. One should check that 7, is well-defined i.e., 7,(T) € End(V), an anti-
homomorphism, and has period 2.

Recall that given a bi-linear form, we can define an associated quadratic form by

gp(x) = b(x, x) (7.12.0.7)
Hence g; is a degree 2 homogeneous polynomial. Given g a quadratic form, we can re-
cover a symmetric bi-linear form

be(x,y) = q(x +y) —q(x) —q(y).
One can check that
by, = 2b,
so in a field of characteristic not equal to 2, b; = Eq/ 2. Thus we have a bijective corre-
spondence between symmetric bi-linear forms and quadratic forms.
We want to answer the following questions in the upcoming lectures:

(1) To what extend is b (or q) determined by 7;,?
31



(2) Does every involution on End (V) come from bi-linear forms?’
(3) When do CSA'’s that are non-split have involutions?
(4) What structural properties of quadratic forms carry over to CSA’s with involution?

The goal is to understand groups that are defined by algebraic equations. Suppose
we have coordinates xi,...,x, on some vector space V = F". Let G(f) be equal to the
set of equations for some polynomial equations on V with the group law described by
polynomial functions.

Example 7.12.1. Consider GL,(F) = (det # 0). Similarly, orthogonal matrices O, (F) =
(TT' =1}

We will look at connected groups with no subgroups that are normal, connected, and
defined by equations fi, ..., f» = 0; we will refer to these are simple groups. Note that
GL,(F) is not simple since the scalar diagonal matrices are normal and connected, how-
ever, SL,(F) is simple. The orthogonal group fails to be simple since it has two compo-
nents, but the special orthogonal SO, (F) is simple when characteristic is not 2.

A?Z Bn Cn Dn G2 F4 E6
SL,,4+1,SU SO, 41 Spy, SOy, . . .

The punchline is that simple linear algebraic groups of types A, B, C, D except Dy come
from CSA’s with involutions. In answering (1) above, we will see that 7, = 7, <= b’ = Ab
for some A € F. Notice that (3) is trivial for split CSA’s since we can just take the transpose.
For the non-split case, if T is an involution on A, then since it is an anti-automorphism, 7 :
A =~ A°P, hence A® A ~ A® A°P = 1, which is split. Thus, per[A] = 2 or 1. Conversely,
if per A|2, then there exists involutions. We will prove this using Galois Descent (5).

8. LECTURE (2/27): INVOLUTIONS AND OTHER ANTI-AUTOMORPHISMS

Bi-linear forms on a vector space. Let V be a finite dimensional vector space.

"We can show that this is not necessarily true since we will need skew-symmetric forms.
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Definition 8.1. A bi-linear form b is a function b : V x V — F that is linear in each variable

i.e., b factors through
VxV /> F

VeVv

Definition 8.2. b is symmetric if b(v, w) = b(w, v) i.e., b factors through

VRV/(v@w —w®w)

VxV

Hence b is symmetric if and only if b € (Sym? B)*.

Definition 8.3. b is left-nondegenerate if
V — VX
v — b(v,e)

is injective, equivalently isomorphic. Similarly, for right-nondegenerate.

Definition 8.4. (V,b), (V',b’) is isometric if there exists ¢ : V =~ V' such that b(v,w) =
' (¢(v), p(w)).

Definition 8.5. b, U are right-isometric if there exists ¢ : V =~ V such that b(v,w) =
b' (v, ¢(w)). Similarly, for left-isometric.

Example 8.5.1. Consider the inner product, (e) on F" where (x,y) = x'y. This is both left
and right non-degenerate.

Lemma 8.6. If b,b’ are both left non-degenerate, then they are left isometric.

Proof. For all x, b/(x,e) € V* and can be mapped to b(¢x, e) for some ¢x. We can check
that ¢ is a linear map. Hence V' (x,y) = b(¢x,y) and similarly, b(x,y) = b’ (x, y). Thus,

b(x,y) = b(pxy)
= b(gyx,y)
=X = ¢Px
So, ¢ = 1d, so ¢ is an isomorphism.
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In particular, any left non-degenerate b
b(x,y) = (px,y) = (M'x)'y = x'My (8.6.0.1)

where ¢ = M! for some matrix. We call this matrix M the Gram matrix for b. Therefore,
b left non-degenerate implies that for all x, x’M # 0 if and only if M non-singular if and
only if b is right non-degenerate. Thus,

| non-degenerate = right non-degenerate = left non-degenerate |

Given b bi-linear on V, we can form ¢}, of, the left and right adjoint anti automor-
phisms. Here’s the idea, we want to define

b(x, Ty) = b(c(T)x,y) and  b(Tx,y) = b(x, o (T)y).
To define this explicitly, we look at

b(x,T(e)) = b(0} (T)x, )
It is easy to check that

oy (M +T) = op(Th)+05(Ta)
0y (iT2) = 0y (Ta)oy (Th)
Rool = ofool =End(V)

Given b, b’ both non-degenerate, we know that b'(x,y) = b(x, uy). We want to relate the
adjoint automorphisms:

V' (x,Ty) = b'(op(T)x,y)

b(ct(Tx), uy)
b(y (1) (T)x,y)
= b(x,uTy) = b(oy(u)oy(T)x,y)
b(oy (uT)x,y) = bloy (w)oy(T)x,y)

= oy (uT) = oy (u)oy(T)
—uT = of (of (u)oh(T))

= o (ep(T)u

inn,(T) = uTu!
inn, (T) = o (o3(T))
Hence we conclude by stating that
(of) = o} oinn, whereb'(x,y) = b(x, uy). (8.6.0.2)
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We have shown a map between

{Non-degenerate bi-linear forms} — {Anti-automorphisms}

b(x,y) =x'My — b'(x,y) =b(x,uy) = x'Muy

If 0, = 0y, then by the above we have that inny; = innyy, if and only if inn, = Id if and
only if u € Z(End(V)) = f. Thus, 0, = oy if and only if there exists some A such that for

every y U'(x,y) = b(x, Ay) = Ab(x,y).
Definition 8.7. b, b" are homethetic if b = Ab' for some A € F*. Hence

{Non-degenerate, homethetic class of bi-linear forms} <« {Anti-automorphims}

Given any ¢ in the latter group, then t oo € Aut(End(V)) there exists a M such that
too = inny so o = toinnyy, thus ¢ is adjoint to b so b(x, y) = x' My.

Involutions.

Definition 8.8. A bilinear form b is

(1) symmetric if b(x,y) = b(y, x)
(2) skew if b(x,y) = —b(y, x)
(3) alternating if b(x, x) = 0 for all x.

In each case, we have b(x,y) = eb(y, x) where €* = 1; we will refer to this as ¢ - symmet-
ric. If b satisfies one of the above conditions, ¢ its adjoint then

b(x,Ty) = b(cTx,y) =eb(y,oTx)
= eb(c?tY,x) = e(b(x,0*Ty))
= b(x,0*Ty)

Definition 8.9. Aisaringand ¢ : A — A an anti-autormorphism is an involution of A is
0?2 =1d. If A is a CSA then we say that ¢ is of the first kind if 0jz(a) = Id.

If not, then 0(F)  F, then ¢(A)a = o (A)o?a = o(c(a)A). So o) is an order 2 non-trivial
automorphim, then F/F is a Galois group with group C; = {0jr). We will call this an
involution of the second kind.

Definition 8.10. A matrix T € M, (F) is symmetrized if T = S + S’ for some S and skew-
symmetrized if T = S — ST for some S.
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Example 8.10.1. A symmetric matrix is
a b
b a
2a b
b 2a

A natural question is do all involutions come as adjoints to symmetric or skew symmet-
ric bi-linear forms? The answer is yes and we will see why shortly. If ¢ € Inv¢(End(V))
is of the first kind, then ¢ = ¢y, for some bi-linear b. By (8.6.0.2), ¢ = 03, = t oinny,. Thus,
02 =to innps of o innp
A(T) = (MMTM )M

— (M(Mt_thMt)M—l)f
= (M HYMTM'M!
= inn T

A symmetrized matrix is

[
Q.
I

(MM

Then M 'M € F*, so M! = ¢éM. Hence M = M" = (eM)! = &M = M, so we have
answered our above question.

Lemma 8.11. Suppose M is the Gram matrix for some bi-linear form b, then

(1) bis symmetric if and only if M is symmetric,
(2) b is skew if and only if M is skew,
(3) b is alternating if and only if M is skew-symmetrized.

We will need the following result:

Lemma 8.12. M is skew’d if and only if M is skew and diagonal entries all 0.

Proof. The only non-obvious part is (3). If M is skew’d, then b is alternating. Lemma 8.12
shows that it is clear that b is alternating.
O

Definition 8.13. If A is a CSA /F, o an involution on A of the first kind, we say that o is
orthogonal if o= = adjoint for symmetric and sympletic if o = adjoint for skew.

Gram/Schmitt and Darboux.
Lemma 8.14. If w is non-degenerate, alternating, then we can write
V=< y) Ly Lo L (oY),
where Wy L Wp, = W1 ® W, and w(wy, wp) = 0 for all w; € W; and w(x;,y;) = 1.
Proof. Proceed by induction on dim V. Choose x; € V\ {0} and non-degenerate y; such
that w(x1,y1) = 1 # 0. Then (x,y) n {x,y)* = 0. By induction hypothesis, we are done.

U
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Proposition 8.15. If b is e-symmetric, then we can write
V=w Ly
where V3l is alternating and W = (z1) | (zp) L ---{z,,) and b(z;,z;) = a; # 0.

Proof. 1t is standard to write W = (ay,...,a,). We induce on the dimension of V. Either
V is alternating or there exists z; such that b(z1,z1) = a1 # 0, so (z1) N (zi)t =0, so
V={z) L {z)".

O

If w is alternating, then after a change of basis it looks like the above perp decomposi-
tion. Moreover, the Gram matrix is of the form

We remark that det M = 1.

The Pfaffian. Classically, the Pfaffian is the square root of the determinant. Let M be
a skew symmetrized invertible matrix which corresponds to an alternating form w and
M = ) after a change of basis i.e.,

w(xm,y) = (¢x)'Qpy.
For notation’s sake, let Af be the matrix for ¢, then we can write the above as follows:
w(x,y) = x'A'QAx
so M = A'QA. Moreover, det(M) = det(A)>.

Definition 8.16. We define the Pfaffian of M as Pf(M) = det(A) i.e., Pf(M)?> = det M.
General non-sense implies that Pf(M) is a rational function in the entries of M. Moreover,
if Pf(M)? is a polynomial function, then Pf(M) is a polynomial.

If (V,w) is a space with an alternating form, we want to define something symmetrized
for (End,w) i.e.,a T = S+ 0,(S). Write w(x,y) = x'vy then v’ = —v and 0, = inn, of.
Then

T = S+0,(S)=S+inny(S"
= S+ Vstvl=(sv4+vsHyt
= (SV—(sv)Hhv!
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The characteristic polynomial of T,
xr(x) = det(x —T) = det(x — (SV — (SV)H V1)
= det(XV — (SV — (SV)!))(det V)1
= Pf(XV —(SV — (SV)))2(Pf(V)?) !

Since xr(x) is a square of a polynomial, we can take a square root.

Definition 8.17. The Pfaffian characteristic polynomial is define by the monic square root
above. The Pfaffian norm is the last coefficient and the Pfaffian trace is the second coef-
ticient.

Theorem 8.18 (Pfaffian-Cayley-Hamilton). If T is symmetrized for w an alternating form,
then Pf x7(x) = 0.

Given a degree five algebra A over F. Given E © A maximal, how Galois is it? More
precisely, consider the Galois closure, the Galois group must be a transitive subgroup of
Ss. If A is of degree 5, does there exists E — A maximal such that the Galois closure does
not satisfy G = Ss.

Theorem 8.19 (Rowen). If deg A = 8 and per A|2, then there exists a Cy x Cy x Cp Galois
maximal subgroup.

If per A = 2 and ind = 2", then there exists a half maximal sub-field where F < L — E
and [E : L] = 2. Characteristics of the algebras in terms of index, period, and degrees can
provide interesting results involving the arithmetic of fields.

Transitioning to Algebras.

Lemma 8.20. Let (V, b) is a space with bi-linear form and dim 'V = n. Then b is symmetric if and
only if Sym(End(V'), 0,) has dimension n(n + 1) /2. b is skew if and only if Skw(End(V), 03)
has dimension n(n +1)/2.

Proof. Consider the isomorphism

where M is the Gram matrix for b. O

Theorem 8.21 (Existence of Involutions). Given a CSA /F A with period 2, there exists o €
Inv¢(A) that is orthogonal.
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Proof. Since A = H!(F,PGL(V)). The action of GL(V) on (Sym? V)* gives rise to a map
GL — GL(Sym? V)*. Moreover,

Taking cohomology of the columns gives the diagram

H'(G,GL(V®E)) —— HY(G,PGL(V®)) = [A] —— H?*(G,F*)

1 1 [

H(GL(Sym?(V®E)*)) —— HY(PGL(Sym?*(V®E)*)) —— H?(G, F¥)
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