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Introduction

Our first goal will be to try to understand the structure and classification of
finite dimensional division algebras over fields. Perhaps this subject starts with
William Rowan Hamilton’s famous discovery of the quaternions in 1843.

Brief history and context

e discovery and historical context of the quaternions

e other systems — octonions, clifford algebras

e frobenius’ theorem

e resurgence around 1900 with Dickson, Wedderburn, etc
e ABHN theorem and class field theory

e dry spell until 50s

e 50’s: Amitsur’s noncrossed products, generic splitting fields, Chatelet’s
varieties, Borel’s classification of “classical groups”

e 60’s: Auslander, Goldman and separability, then Grothendieck, then Gi-
raud’s gerbes

e 70’s: Pl algebras and huge increase in activity, conferences



Chapter 1

Background on rings and
modules

In this chapter we will develop the basic structure theory of finite dimensional
simplerings (i.e. Wedderburn’s structure theorem) together with some standard
useful results for working with central simple algebras, such as the double
centralizer theorem and the Noether-Skolem theorem. The basic tool we will
use is the interplay the structure of rings and of their categories of modules.
From this perspective, a natural first goal will be the Morita theorems, which
tell us when module categories of two different rings may be equivalent.
We will start with a few basic ring-theoretic preliminaries.

1.1 Ring preliminaries

1.1.1 Simple and semisimple rings

Our strategy for developing some structure theory of rings will be primarily
via understanding their interactions with modules. On the one hand, given a
ring R and a left R-module M, we obtain a natural ring map R — End(M),
where the right hand side is the ring of endomorphisms considering M as an
Abelian group. In the case that R has the structure of an algebra over some
commutative ring k, we similarly get a homomorphism R — End,(M). While
this is interesting in the context of understanding our ring in terms of, for
example, matrices in the case that k is a field and M is finite dimensional, we
obtain much more information by considering some additional structure on the
module M as we now describe.

For an R-module M, we will want to consider the R-linear endomorphisms
of M, which forms aring S = Endg(M). We see that M now has two compatible
module structures as both a left R-module and as a left S-module and that these



operations are compatible in the sense that
r(sm) =s(rm) VreR,seSmeM,

from the fact that S acts as R-linear maps. As our rings are potentially non-
commutative, many authors choose to work instead with right instead of left
R-modules for such discussions. That is, if N is a right R-module and S is ring
of right R-linear endomorphisms of N, the analog of the above equation is the
identity

s(nr) = (sn)r VYreR,seSneN,

which turns the prior “commutativity” relation into an “associativity” relation.
While this is a handy convention, we will mostly not use it in this section and
stick to considering only left R-modules.

In any case, it is now automatic that for a (left) R-module M, if we set
S = Endgr(M), then reading our relation in reverse shows us that R acts on M
as S-linear endomorphisms, giving us a map

R — Ends(M),

and in favorable circumstances, understanding aspects of the structure of S and
M will then give strong information about R.

Definition 1.1.1. Let R be a ring and M a left R-module. We say that M is simple
if M # 0 and the only submodules of M are 0 and M. We say that a module is
semisimple if it is a direct sum of simple modules.

Definition 1.1.2. Let R be a k-algebra and M a left R-module. For m € M, we
define the (left) annihilator of m to be the set of r € R such that rm = 0. We note
that this is a left ideal of R.

Definition 1.1.3. Let R be a k-algebra and M a left R-module. We define the
(left) annihilator of M, denoted anng (M) (or as 1. anng (M) if we need to be clear
to distinguish left from right modules) to be the ideal of R consisting of those
r € R such that rm = 0 for all m € M. Note anng(M) = [ ),,cps anng (m) and that
this is a two-sided ideal of R.

Of course, we define right annihilators analogously.

Definition 1.1.4. Let Rbe aring and M a left R-module. We say that M is faithful
if anng (M) = 0.

Note that if M is a faithful R-module we obtain an injective map R —
Endy(M). Consequently, one nice use of faithful modules is that they give
concrete realizations of our algebras R. For example, if k was a field, this would
exhibit R as an algebra of matrices over k.

Lemma1.1.5. Let R bearing and M aleft R-module. Then the following are equivalent:
1. M is faithful,



2. M®is faithful for some index set I,
3. there exists a submodule N — M such that N is faithful.

Definition 1.1.6. Let R be a ring. We define the Jacobson radical J(R) of R to be
the intersection of all maximal left ideals of R. We say that R is semiprimitive if

J(R) = 0.

Lemma 1.1.7. Let R be a ring. Then J(R) is a two-sided ideal of R and can be described
as
JR) =[] anng(M).
M simple left
R-module

This is a straightforward consequence of the following Lemma:
Lemma1.1.8. Let R bearingand Maleft R-module. Then the following are equivalent:
(1) for every m € M\{0}, anng(m) is a maximal left ideal of R,
(2) for some m € M, anng(m) is a maximal left ideal of R,
(3) M = R/] for some maximal left ideal ] < R,
(4) M is a simple left R-module.

Proof. Clearly (I) implies (2). If (2) holds, we find that by simplicity M = Rm
and so the natural map R — M given by r — rm is surjective, which implies
M = R/anng(m), showing (B) with | = anng(m). If (3) holds, then () follows
immediately from the correspondence theorem. Finally, if (4) holds and m e M
is nonzero then Rm is a nonzero submodule and hence must be M. It follows
that we have an isomorphism R/anng(m) = M and so anng(m) is a maximal
left ideal as claimed. ]

While this definition would seem to leave open the possibility of there being
a different notion of a right Jacobson radical, as we will see, this notion is in fact
“ambidextrous.”

Definition 1.1.9. Let R be a ring. We say that r € R is right (resp. left) quasireg-
ular if 1 — r has a right (resp. left) inverse. We say that r is quasiregular if it is
both left and right quasiregular.

We recall that in a ring R, an element v € R having a left multiplicative
inverse need not imply 7 has a right inverse and conversely. On the other hand,
let us recall a few elementary facts about when one sided inverses and two
sided inverses concide.

Lemma 1.1.10. Let R be a ring and suppose r € R has both a right an a left multi-
plicative inverse, say ar = 1 = rb. Then a = b.

Proof. This follows from the elementary computationb = 1b = arb =al =a. O



Lemma 1.1.11. Let R be a ring and suppose a,r € R with ar = 1. If a also has a left
inverse then ra = 1.

Proof. Suppose b € R with ba = 1. Then by Lemma [1.1.10} we have b = r. But
therefore ra = ba = 1. ]

Lemma 1.1.12 (Isaacs, Thm. 13.4). Let R be a ring. Then every element of J(R) is
quasiregular.

Proof. Let r € J(R). We first show that r is left quasiregular. For this, consider
the left ideal R(1 — r) generated by 1 — r. We claim R(1 — r) = R, which would
say that r is left quasiregular. Arguing by contradiction, if R(1 — r) # R then
we may choose I a maximal left ideal containing R(1 — r). Since r € J(R) it is
in every maximal right ideal and so r € I. But 1 — r € M by construction which
gives the contradiction 1 € M.

We now show that r is right quasiregular. As is already left quasiregular, we
may write s(1 — r) = 1. By Lemma it suffices to show that s has a left
inverse. For this, we consider ¥y = 1 — s and note that ass = 1 — y, s having a
left inverse is the same as y being left quasiregular. Consequently it suffices to
show that y € J(R). But for this, we write

l=s(1-nN=01-y)(l-r=1-y—r+yr

and so yr —y —r = O which gives y = (y—1)rand r € J(R) tells us that y € J(R),
completing the proof. ]

Theorem 1.1.13 (Isaacs, Thm. 13.4). Let R be a ring. Then J(R) is the largest two-
sided ideal consisting of quasiregular elements.

It follows from this that the “right” and “left” Jacobson radicals coincide.

Proof. Infact, we will show thatif I is any leftideal consisting of left quasiregular
elements, then I < J(R). For this, suppose we have such an ideal I. It suffices
to show that I = M for every maximal left ideal M. Choosing such a maximal
M, if I ¢ M then as M is maximal, we have I + M = R and so we may write
1=x+mforxel,meM,andsom =1—x. Butasx € I is left quasiregular, this
implies m is left invertible, contradicting the fact that M is a proper ideal. O

Theorem 1.1.14 (Nayakama’s Lemma, Rowen’s Ring theory, Prop 2.5.24). Let
R be a ring and M # 0 a finitely generated left R-module. Then J(R)M # M.

Proof. Choose my, ..., m, € M a minimal generating set. If J(R)M = M we may
write m, = >, x;m; for x; € J(R). Subtracting, we find (1 — x,,)m, = Z?;ll xXim.
But x, € J(R) is quasiregular and hence (1 — x,) has some inverse, say 4 € R.
But therefore we find m, = Z;:ll (ax;)m;, showing that m, is in the span of
my, ..., my_1 and contradicting the minimality of our generating set. O



1.2 The Morita theorems and double centralizers

The Morita theorems function by a very useful mechanism that we will see
in various contexts. We can refer to this as the double centralizer phenomena,
which occurs when we have a k-algebra A (for some commutative ring k), a
subalgebra B — A, and we consider the centralizer C4(B). It is a tautology that
we have an inclusion

Bc CA(CA(B))

We will find that in favorable circumstances, we actually have an equality. When
this happens, it will often reflect an interesting relationship between these three
algebras.

In understanding the structure theory of k-algebras, we will see that the
matrix algebra M, (k) will turn out to play a role of a kind of trivial algebra.
This will be first reflected as a consequence of Morita theory (see ??), where we
will see that both k and M,, (k) have equivalent categories of modules.

1.2.1 Projectives and generators

Definition 1.2.1. Let Rbe aring and P aleft R-module. We say that P is projective
if for every surjective map of R-modules M —» N and every homomorphism
¢ : P — N, there exists ¢’ : P — M giving a commutative diagram

Lemma 1.2.2. The following are equivalent for a left R-module P

1. Pis projective,

2. there exists an R-module P’ such that P @ P' = R®! for some index set I.
Furthermore, we can choose I to be finite if P is finitely generated.

Proof. If P is projective, choose a surjection R®! — P via a generating set of
cardinality |I|. By hypothesis, the identity map P — P lifts to a map P — R¥
and hence the surjection is split, giving R®' = P@ P’ where P’ is the kernel of the
map R®' — P. Conversely, if P® P’ = R", M -» N is a surjectionand ¢ : P — N
is any morphism, consider the morphism ¢ : R — N given by the composition
Rt =P@P — P % N. It suffices to show that (?) : can be lifted to a map to
M. But as Homg (R®!, M) = Map(I, M) and Homg (R®!, N) = Map(I, N) this just
amount to lifing the set map (corresponding to our free generators). m]

Note that as a trivial consequence, R is projective, as is any free module R®.

Definition 1.2.3. Let R be a ring and M a left R-module. We say that M is
a generator if for every other left R-module N, there exists a surjective map
M®' - N.



Interestingly, generators have a somewhat “dual” characterization as com-
pared to projectives:

Lemma 1.2.4 (Anderson and Fuller, 17.6). Let R be a ring and M a left R-module.
Then the following are equivalent

1. M is a generator,

2. there exists a left R-module Q such that M" = R ® Q for some n € IN.

Proof. As M is a generator, we can find some I and some surjective map ¢ :
M®' — R. Choose m € M® with ¢(m) = 1. As every element in M® lies
in a finite sub-direct sum, we can choose some finite subset Iy < I such that
m e M®b < M. But then the restriction ¢ : M®® — R has 1 in its image
and hence is surjective. Without loss of generality, we may assume we have a
surjection ¢ : M" — R. But as R is projective, we obtain a direct sum M" = R®Q
where Q = ker(¢). m|

Another “dual” type statement relating generators and projectives is as
follows:

Proposition 1.2.5. Let R be a ring and M an R-module. Let S = Endg(M). Then we
may consider M as either an R-module or as an S-module.

(1) if M is a finitely generated projective R-module then it is a generator as an S-
module,

(2) if M is a generator as an R-module, then it is finitely generated and projective as
an S-module.

Proof. For (1), suppose M is finitely generated and projective and choose M’ so
that M @ M’ = R". Then as S-modules, we have an identification:

M®" = Homg(R®", M) = Homg(M @ M’, M) = Endg(M) @ Homg(M’, M),

and so setting Q = Homg(M’, M), we find M®" =S, showing that M is a
generator by Lemma([I.2.4]

For (2), we assume M is a generator over R and choose an R-module Q such
that M®" = R ® Q. We then find that as S-modules we have:

SO — Endgr(M)®" = Homg (M®", M) = Homg(R® Q, M) = M@ Homg(Q, M),

which shows that M is a direct summand of the free module S®" and is therefore
projective. O

Lemma 1.2.6. Let R be a ring and M a left R-module which is a generator. Then M is
faithful.
Proof. Writing M®" = R @® Q, we see that by Lemma that M is faithful if

and only if M®" is faithful. But again by Lemma this follows from the fact
that R « M is faithful. i

Definition 1.2.7. For a ring R, we say that a left R-module P is a progenerator
if it is a finitely generated projective R-module which is a generator in the
category of left R-modules.



1.2.2 Bi-endomorphisms and balanced modules

As we head towards double-centralizer type results, let us first make some
observations about centralizers in matrix algebras. For notational convenience,
let us make the following definition:

Definition 1.2.8. Let R be a ring and M an R-module. Let S = Endg(M). Then
M is an S-module and we define BiEndr (M) = Ends(M) = Endgng, ) (M).

Note that we always have a canonical map R — BiEndg(M).

Remark 1.2.9. Let R be a k-algebra for some commutative ring k and let M
be an R-module. Then Endg(M) is a k-algebra. Repeating this logic, we see
Endgngvy (Endgr(M)) is contained in Endi(M) and consequently BiEndg (M) =
Endgnqv) (Endr (M)) = Endgng, () (Endr(M)). That is, bi-endomorphism rings
agree when computed either in terms of rings or in terms of k-algebras.

Remark 1.2.10. In the case that R is a k algebra for some commutative ring k
and M is a faithful R-module, we have R = Endy(M), Endgr(M) = Cgng, vy (M)
and CEndk(M) (CEndk(M) (R)) = B1EndR(M)

Definition 1.2.11. Let R be a k-algebra for some commutative ring k and let M
be an R-module. We say that M is balanced if R — BiEndr (M) is surjective and
that M if faithfully balanced if this is an isomorphism (i.e. if M is faithful and
balanced).

Lemma 1.2.12. Let k be a commutative ring and R a k-algebra. Let M, N be R-modules
and set E = Endy(M @ N). Then

. BiEndz(M) 0 Endi(M) Homy(N,M)
BiEndg(M@®N) = [ 0 BiEndR(N)] [Homkk(M,N) gndkk(N) ] =E.

In particular we have a natural map BiEndr(M ® N) — BiEnd (M) which commutes
with the natural maps R — BiEndr (M @ N) and R — BiEndgr(M).

Proof. Lete = [} §] € E.We first show thatany T € BiEndg (M@®N) preserves the
summand M in the decomposition M@ N (and so by a similar argument for M,
it preserves the full decomposition). For this, we check that T(M @ 0) c M@0,
or equivalently Te(M @ N) < ¢(M @ N). But this follows from the fact that

e € Endr(M @ N) and consequently Te = eT.

We therefore have BiEndr(M @ N) < [Endg(M) En d(k)(N) ] But as the elements

of BiEndg (M@ N) commute with the subring [ End’é (M) En dg ™) ] of Endr(M@®N),

it follow that BiEndg(M @® N) < [BiEn%R ™) BiEngR(N) ] as claimed. i

Lemma 1.2.13. Let k be a commutative ring and R a k-algebra. Let N be an R-module.
Then the natural map R — BiEndr(R @ N) is surjective.
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Proof. Let E = Endi(R @ N). Suppose ¢ € BIEndg(R@ N) = Ceg(Endr(R@® N)).

Forn € N, considerthemap A, : R — Nwith A,,(r) = rn. Wefind A = [8 %"] €
Endr(R®N) and if T = [ ] € BiEndg(R @ N) (identifying R = BiEndg(R))
then as TA = AT we find rn = 1p(n). Consequently 1) is the R-linear map given
by n — rn and so T is the image of the scalar multiplication by r map. ]

Lemma 1.2.14. Let R < E be rings and let S = Cg(R). Then with respect to
the diagonal inclusion of R,S,E into M, (E) as Rl,, SI,, EL, respectively, we have
Chm,(e) M (R)) = S and Cp,(g)(S) = Mu(R).

We now come to our first version of a kind of double-centralizer theorem:

Lemma 1.2.15 (see Anderson and Fuller, Theorem 17.8). Let R be a ring and M
an R-module which is a generator. Then M is faithfully balanced. In particular, if R is
a k-algebra for some commutative ring k and E = Endy (M) then we have an inclusion
R — E and the natural map R — Cg(Cg(R)) is an isomorphism.

Proof. Let R" = Cg(Cg(R)) < Endy(M). As M is faithful by Lemma [1.2.6] the
natural map R — R’ is injective. Write M" = R@® Q as in Lemma [1.2.4 We
note that Endy(M") = M,(E). By Lemma we have an identification
M,,(Ce(R)) = Cwm, ) (R) and so

Cu, (£) (Cwm, (5) (R)) = Cm, ) (Mn(Ce(R))) = Ce(Ce(R)) = R'.

But Cy, (£) (Cwm, (r) (R)) = BiEndg (M®") = BiEndg(R®Q). But by Lemma|1.2.13
the map R — R’ is therefore surjective and hence an isomorphism. o

1.2.3 The Morita characterization of equivalences

Let R be aring and suppose P is a progenerator. Consider the ring S = Endg(P).
We see that we obtain a functor &p : R-mod — S-mod via M — P ®g M.

Theorem 1.2.16. Let R and S be rings, and F : R-mod — S-mod is a functor. If F
is an equivalence of categories then F(R) is naturally an S — R bimodule P which is
an RP-faithful S-progenerator such that S = Endge (P). Further, we have a natural
isomorphism of functors F = §p.

Proof. Suppose F is an equivalence, and let P = F(R). As F is an equivalence,
it follows that P is projective and a generator since R is. We claim that P is
finitely generated — for this, we note that for any index set I and surjective map
®@ictM; — R in R-mod, the element 1 € R is the image of some finite sum, and
so we find that there is a finitely indexed sub-set Iy < I such that ®;e;,M; — R
is still surjective. As this is a categorical property, it follows that P has the same
property in the category S-mod. In particular, if we choose any generating set
giving a surjection S®! — P, we obtain a surjection from a finite sub-direct sum,
showing that P is finitely generated. Hence P is an S-progenerator.

Consider the endomorphism ring Ends(P) = Endg.mod (F(R)). As we have
an equivalence of categories, this is isomorphic to the endomorphism ring

11



Endg(R) = Endgrmod(R) = R (endomorphisms are given by right multipli-
cation by elements of R). Consequently, P is an S — R bimodule. Moreover, as
any R-module map f : R — R, necessarly induced by right multiplication by
some 7 € R passes to, upon application of F a map P — P induced by this same
multiplication, this time considering P as an R-module, we see that we can
identify F(f) with P ®g f (both being different descriptions of multiplication
by ). More generally, as general maps f : R®! — R/ are combinations of these
maps, we also see F(f) = P ®g f in this case as well.

As F is an equivalence, it preserves direct sums and exact sequences. In
particular, if M is any R-module, we can choose a presentation

R LRI M 0,

and comparing the results of applying F, versus tensoring with P, we find we
have a commutative diagram with exact rows (using that F(f) = P ®k f):

F
pet LD py F(M) 0

par 12V pj P @ M —— 0.

Therefore we obtain an isomorphism F(M) = PQgrM. In Exercise we check
that these can fit together to produce a natural isomorphisma : F - PQr_. O

Exercise 1.2.17. Show that choosing as in the proof of Theorem|1.2.16|a free resolution
of each R-module M, we may obtain a natural isomorphism a : F — P Qg _.

We also show that the converse of Theorem [1.2.16| holds. Before doing so,
we record some preliminary lemmas:

Lemma 1.2.18. Let R,S be rings, let P be a right R-module, let M be an S — R
bimodule, and let N be a left S-module. Consider the natural map P@rHomg(M, N) —
Homg(Hompger (P, M),N) given by p ® f — (¢ — f($(p))). If P is projective over
RP, then this is an isomorphism.

Proof. Note that if P = R¥! is free, then this is just the identification
R® @k Homg(M,N) = | [ Homs(M,N) = Homs(M®, N)
I

— Homs(Homge (R®!, M), N),

verifying the claim in the case that P is free. In general, choose a right R-module
P’ with R®! = P@® P’ as right R-modules. By the naturality of this map in P, and
right exactness of the tensor, we find we have a commutative diagram:

0

R®I ®r Homg (M, N) P ®r Homg (M, N)

|

Homg(Homger (R®!, M), N) — Homg(Homge (P, M), N) — 0

12



which shows our map is surjective. Arguing similarly for P/, we then find we
have a commutative diagram

0 —» P’ ®x Homg(M,N) —— RO®I ®r Homg(M, N) P ®r Homg(M,N) —=0

: |

Homs(Homge (P’, M), N) = Homg(Homge (R®!, M), N) = Homg(Homge (P, M),N) = 0

and a diagram chase now shows that the map
P QR Homs (M, N) s Homs (HOHIRDP (P, M), N)
is injective and hence an isomorphism. m]

Lemma 1.2.19. Let R, S be rings, let P be a left S-module, let N be an S — R bimod-
ule, and let M be a left R-module. Consider the natural map Homg(P,N) @ M —
Homg(P,N ®r M) given by f @ n — (p — f(p) ® n). If P is projective over S, then
this is an isomorphism.

Proof. This follows the same pattern as the proof of Lemma|1.2.18 O

Theorem 1.2.20 (Morita — see Anderson and Fuller 22.2). Let R be a ring and P a
progenerator in R-mod”. Let S = Endge (P). Then P is an S — R bimodule and the
morphism Fp : R-mod — S-mod given by Fp(M) = P ®g M is an equivalence of
categories with inverse equivalence given by Gp : S-mod — R-mod via Gp(N) =
Homg(P,N )ﬂ

Proof. We check that these are inverse equivalences. For this we have (using
Lemma [1.2.19) together with the fact that R” = BiEndge P = Endg(P) (ie.
Ends(P) can be identified with R acting by right multiplication):

(5p8p(M) = Homs(P,P®R M) = Homs(P,P) ®R M = R@R M =M.
For the other direction we have (using Lemma|1.2.18):
Fp®p(N) = P®g Homgs(P,N) = Homg(Endg (P), N) = Homg(S,N) = N.
O

Corollary 1.2.21. Let R be a ring. Then for any n > 0, we have an equivalence of
categories R-mod = M-mod, (R).

Proof. This follows from Theorem [1.2.20| via the right R-progenerator P = R".
O

IThe R-module structure on Homg (P, N) is defined as follows. For f € Homg(P,N), setaf(p) =
f(pa). We then check that (a(bf))(p) = (bf)(pa) = f(pab).
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1.3 Linear algebra over division rings

Lemma 1.3.1. Let D be a division ring. Then every D-module is free.

Unlike in the case of a commutative field, one now has the need to dis-
tinguish between right and left vector spaces, and, perhaps surprisingly, these
categories may well be non-equivalent.

From some perspective it is natural to consider right D-vector spaces, as
these have their linear transformations acting on the left, having the effect of
making commutativity of the action be interpretable as a kind of associativity
(see the discussion at the beginning of Section [I.1.1). In particular, we see that

Homright D-mod (D, D) =D

where elements of D, viewed as endomorphisms, act as left multiplication.
Consequently, from the usual identification

Hompr(M1 ®@Mo @ --- @My, N1®N2,®---®N,) =

HOIIIR(Ml,Nl) HomR(Mz,Nl) HomR(Mm,Nl)
HomR(Ml,N2) :
Homg (M3, Ny,) e -++ Homg (M, Ny)

we find Endright p-mod (D") = M,,(D) acting on column vectors on the left.

Exercise 1.3.2. Show that there is a bijection between right ideals of M,(D) and
submodules of the right D-space D" given by

[I<, M,(D)] — Hom(D", W) = {¢: D" — D" | im(¢)) = W},
and a bijection between left ideals of M,(D) and submodules of D" given by
[I<¢M,(D)] — Hom(D"/U,D") = {¢ : D" — D" | ker(¢) > U}.
Exercise 1.3.3. Show that we obtain from Exercise[I.3.2]a bijective correspondence
{rank m right ideals of M,,(D)} < {rank n — m left ideals of M,,(D)},

given by taking a right ideal I = M, (D) to its left annihilator | = anng, ) (I) =
{x e M,,(D) | x] = 0}, and similarly taking a left ideal to its right annihilator.

1.4 Central simple algebras over fields

Recall that a ring (or algebra) is called simple if it has no two-sided ideals. If A
is an F-algebra, it is called F-central if Z(A) = F and dimp(A) < .

Definition 1.4.1. A central simple algebra over F is an F-algebra A which is
simple and F-central. We say that A is a central division algebra over F if in
addition A is a division algebra.
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1.4.1 Simple rings (with finiteness conditions)

Noncommutative simple rings can have very intricate and complicated struc-
tures. On the other hand, in the presence of finiteness conditions, including
such things as being a finite dimensional algebra over a field, satisfying the
Artinian condition, etcetera, we find significant structural constraints on such
algebras. As we will primarily be focused on finite dimensional algebras over
fields, we will generally find ourselves in this context.

Let’s first make a few quick observations about simple rings. First, that they
are algebras over fields:

Lemma 1.4.2. Let R be a simple ring. Then its center Z(R) is a field.

Proof. Let x € Z(R)\0. Since x is central, xR = Rx = RxR is the ideal generated
by x. By assumption, since R is simple and x # 0, it follows Rx = xR = R and
therefore we can find elements v,z € R such that yx = xz = 1. Consequently, x
is invertible in R. But now x central implies x~! is as well, since ax = xa implies
x~'a = ax~!. Therefore Z(R) is a field. i

Consequently, when talking about simple rings, it always makes sense to
consider them as algebras over some field F (which we can take, if we’d like, to
be the center).

Next, we note the following well known result, which can be viewed as
responsible for the ubiquity of division algebras in the study of more general
rings and algebras.

Lemma 1.4.3 (Schur’s Lemma). Let R be a k-algebra and M a simple left R-module.
Let D = Endr(M). Then D is a division algebra over k.

Proof. Let d € Endgr(M). Then as ker(d),im(d) are submodules fo the simple
module M, it follows that they are either 0 or M. If ker(d) = M or if im(d) = 0
then d would be the 0 endomorphism. On the other hand, if these don’t occur,
then ker(d) = 0 and im(d) = M, which says d is a bijective endomorphism.
One can now check that the inverse of an invertible endomorphism is itself an
endomorphism, showing that d=! € Endg(M) whenever d # 0. Hence D is a
division algebra. ]

We will now aim to prove the following classification result, which can be
viewed as a version of Wedderburn’s structure theorem.

Theorem 1.4.4. Let R be a simple ring containing a minimal left ideal. Then R =
M, (D) for some division ring D.

In order to prove this, we will make use of the following result of Rieffel as
described in [?, Lemma 2.1.6].

Lemma 1.4.5 (Rieffel). Suppose A is a simple F-algebra for some field F and L < A is
a minimal left ideal. Set E = Endp(L) and B = Enda(L) = Cg(A). Then the natural
map A — Cg(B) is an isomorphism.
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In other words, in the language of Definition[1.2.11} L is faithfully balanced.
Let’s go ahead and see how this gives us our result:

Proof of Theorem Let A be a simple F-algebra and let L be a minimal left
ideal. Let D = Enda(L). By Lemma D is a division algebra and by
Lemmall.4.5, A = Endp(L). Consequently A can be thought of as D-linear endo-
morphisms of the D-module L, which, by Lemma 1.3.1|has some free basis. We
claim that L is finite dimensional over D, and hence A = Endp(D") = M,,(D°P)
for some D.

To show that L is finite dimensional over D, let us considelﬂ

F ={¢p € Endp(L) = A | such thatim ¢ is finite dimensional}.

We claim that .# = A, which would tell us that L = im(id) is finite dimensional
as claimed. In fact, it is easy to see that .# # 0 as it is possible to project onto a
single basis vector via some (possibly infinite) basis for L. But we also claim that
& is an ideal of Endp(L) = A. This is because if ¢ € Endp(L), and f € .# then
im f¢ < im f and so f¢ € &. Butim(¢f) < ¢(im f) so im f finite dimensional
implies ¢p(im(f)) is as well, so ¢ f € .Z. But since A = Endp(L) is simple, this
implies .# = A and so L is finite dimensional as claimed. O

It remains to prove the Lemma.

Proof of Lemma([I.4.5) Consider the map A : A — E induced by left multiplica-
tion a — (x — ax). By definition, A(A) < Cg(B) = Endg(L).

Our strategy will be to show that that A(L) is a left ideal of Cr(B) = Endg(L).
From this it would follow that Endg(L)A(L) = A(L). But since A is simple,
A = LA and so we would have

A(A) = A(LA) = A(L)A(A) = Endg(L)A(L)A(A) = Endg(L)A(LA)
= Endp(L)A(A) > Endg(L),

which would give the reverse inclusion and complete the proof.
Let us then check that A(L) is a left ideal of Endg(L). For this, we need to see
that if ¢ € Endp(L) and x € L then ¢A(x) € A(L). Butif we let y € L, then

(@A) (y) = d(A(x)y) = dxy) = O(Ry(x))

where R, : L — L is given by right multiplication by y. But we can see that R,
is an element of E which commutes with the action of A on the left and hence
Ry € B. But as ¢ is B-linear, it follows that

(@A) () = ¢(Ry(¥)) = Ryp(x) = p(x)y = A(P(x)).

Butas thisis true foreach y, we find A (x) = A(¢p(x)) € A(L) and soEndg(L)A(L) <
A(L) as claimed. O

2Thanks to Yam Felsenstein for sharing this argument from his notes from a course by Eli
Aljadeff.
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Lemma 1.4.6. Suppose A is a simple F-algebra admitting a minimal left ideal L.
Then, every simple left A-module is isomorphic to L. Further, every left A-module is
semisimple and can be written as a direct sum of copies of L.

Proof. By Theorem @A = M, (D) = Endigh.p(D"), where D = Enda(L) is
a division algebra. By Theorem it follows that A-mod = D-mod. But
as every left D-module is isomorphic to a direct sum of copies of D, and as
D is the unique simple D-module, our equivalence of categories, described in
Theorem takes D to the simple module L = D". The result therefore
follows from our equivalence of categories. m]

Lemma 1.4.7. Let F be a field and A a central simple F-algebra. Then A = M, (D)
for some F-central division algebra D. Furthermore, n is uniquely determined and D is
unique up to isomorphism.

Proof. By Theorem we have A = M,,(D) for some division algebra D. It
remains to show that D is also F-central and that D is unique up to unique
isomorphism.

By Lemma [[214, F = Z(A) = Z(My(D)) = Cy0)(Mu(D)) = Cp(D) =
Z(D), and so D is also F-central (note it is evidently finite dimensional as it is a
subspace of A).

On the other hand, if M, (D) = M,,(D’) for some other division algebra
D’ then via Corollary we have and equivalence of categories D-mod =
D’-mod. Butby Theorem itfollows that there is some right D-progenerator
P and an isomorphism D" = End;igne.p (P). Butby Lemma P = D™ for some
m and so D’ = M,,(D). But since D’ is division, this immediately implies m = 1
andso D’ = D.

It remains to show that if M, (D) = M,,(D) then n = m. But this follows
from the fact that the dimension (rank) of a D-vector space is well-defined. So
D" = D" implies n = m. m]

Lemma 1.4.8. Let A and B be F-algebras, and suppose that A ®r B is simple. Then A
and B are both simple.

Proof. This follows from the fact that if <A is a proper ideal, then I®r B<A®r B
is also a proper ideal (and similarly for ideals of B). o

For an F-algebra A, let A° = A ®r A°P. This is often called the enveloping
algebra of A. We have a natural map

A® ——— Endp(A)
aQ®br—— (x — axb),

which is sometimes referred to as the “sandwich map.”

Lemma 1.4.9. Let A be an F-algebra. Then with respect to the inclusion Enda.(A)
End,igni-a(A) = A, we have and identification End s (A) = Z(A).
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Proof. Suppose x € A, and regard x as the element L, of Endyight.4(A) via Ly (y) =
xy. Thenx € Z(A) if an only if xy = yx for all y. Although somewhat redundant,
this is equivalent to saying xyzw = yxzw for all y, z, w. But

L(y®z)(w) = Ly(ywz) = xywz and (y®z)Li(w) = (y®z)(xw) = yxwz.

So we see that x is central in A if and only if L,(y ® z) = (y ® z)Ly for all y, z,
which is to say, if and only if L, € End4. (A). m|

1.4.2 Splitting central simple algebras

1.4.3 Characterizing central simple algebras

Lemma 1.4.10. Let A be an F-algebra. Then A is a central simple F-algebra if and only
if the sandwich map A° — Endp(A) is an isomorphism.

Proof. We first note that if this is an isomorphism, then necessarily dimr(A) <
0. Arguing by contradiction, suppose that A has a basis ¢;, i € I, with I infinite.
Then A ®r AP has a basis of the form ¢; ® ej indexed by I x I, showing that the
dimension of A¢ is the same as that of A. On the other hand,

Endr(A) = Home((DE @, F) = | [Home(EDF) = [ [ DE

iel iel iel jel iel jel

And the dimension of this space is at least as big as the dimension of [ [, F.
But this space has dimension 2/, yielding our contradiction.

Assuming that we have anisomorphism, it follows that Endr(A) = Mgim,(a)(F)
is simple, and therefore by Lemma|[I.4.8} A is simple. But Z(A) = Z(A) ® F —
Z(A°) = F tells us that Z(A) = F and so A is F-central.

For the converse, suppose A is a central simple algebra over F. As A°-
submodules of A are the same as ideals of A and A is simple, it follows that
A is a simple module over A° (via the standard “sandwich action” of A¢). But
therefore, since A° is a simple and finite dimensional F-algebra, it admits a
minimal left ideal L (as one can choose one of minimal dimension), and by
Lemma any simple module is isomorphic to this one. That is, L = A
is left A°-modules. But this implies that the map A° — Endgng, (4)(A) is an
isomorphism by Lemma By Lemma we can identify Ends(A) =
Z(A) = F, which then gives us our desired isomorphism A¢ — Endg(A). ]

It will be useful to have some tools to help understand the behavior of
simplicity and centrality under tensor product. Let us start with an observation
about the tensor product of associative algebras:

Exercise 1.4.11. Let A, B, C be R-algebras for some commutative ring R. Then we have
a natural identification

Homg (B&RC,A) = {(qu, ¢c) € Homg(B, A) x Homg(C, A) q)ig]]i)nf;qifff)} .
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Lemma 1.4.12. Let B, C be algebras over F. If B®g C is simple then B and C are both
simple.

Proof. We assume by contradiction that B is not simple. Let < B be a proper
ideal. Then it is straightforward to check that I ® C is an ideal in B® C, and by
dimension count, it is also a proper ideal. m]

We have a partial converse to this as well:

Lemma 1.4.13. Let B be a central simple F algebra and let C be a simple F algebra.
Then B ®f C is also simple.

Proof. The strategy is as follows. As every two sided ideal is a kernel of a
homomorphism, to show that an algebra is simple is the same as showing
every (always unital) homomorphism must be injective. So, let us suppose we
have a homomorphism ¢ : B&® C — A. As both B and C are simple, it follows
that the restriction of ¢ to B and C gives injective homomorphisms. The result
will now follow from the next lemma. m]

Lemma 1.4.14. Let B be a central simple F algebra and C a simple F-algebra. If
¢p : B — Aand ¢c : C — A are (necessarily injective) homomorphisms such that
¢(B) and ¢c(C) commute in A then the induced map ¢ : B® C — A is injective.

Proof. As the maps ¢p and ¢c are injective, we may as well assume that B and
C are subalgebras of A and that C = C4(B). Now, as B is finite dimensional, any
element of B ® C can be written in the form a = > b; ® ¢; where the elements
bi € B are taken to be from an F-basis {by,...,b,} of B. Futher, we have in this
case @ = 0 if and only if ¢; = 0 for all i. Therefore our goal is to show that
Y. bic; = 0if and only if ¢; = 0 for all i.

We note that A is a B°-module as well as a righﬂ C module, and as C
commutes with B, the action of B¢ and C on A commute with each other as well.
Noting the isomorphism B® — Endp(B) via the sandwich map from ??, we may
in particular find, for each j, an element T; € B® such that Th; = 6;;1p = 9;14.
We then find that:

Dibici=0 = T; Y bic;=0 = > (Tjh)ci=0 = ¢; =0,
for all j, as desired. O

We note, in particular we find:

Lemma 1.4.15. Suppose B, C are finite dimensional F-subalgebras of an algebra A,
with B central simple, C simple and C = C4(B). Then the following are equivalent:

1. A=BC,
2.A=B®C,
3. (dimA) = (dim B)(dim C).

3although both sides work fine!
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Let us now record an observation about tensor products of vector spaces:

Lemma 1.4.16. Suppose we have F-vector spaces and subspaces Wi < V1, Wo < V.
Then as a subspace of V1 ® V, we have

(Wa® Vi) n (Wi ®Vy) = W1 @ Wa.
Proof. Exercise. ]
This gives a useful characterization of centers of tensor products:
Lemma 1.4.17. Let B, C be F-algebras. Then Z(B® C) = Z(B) ® Z(C).

Proof. Tt is clear that Z(B) ® Z(C) < Z(B ® C). For the converse, we note that
Z(B®C) <

Cpec(F®C) = B®Z(C), and similarly Z(B® C) < Z(B) ® C. Consequently we
haveby ??, Z(BR®C) < (B®Z(C)) n (Z(B) ®C) = Z(B) ® Z(C), completing the
proof. m]

These can be put together in the following useful observation:

Proposition 1.4.18. Suppose A is a central simple F-algebra and E/F is a field exten-
sion. Then A ® E is a central simple E-algebra.

Proof. By ??, we see that A ®r E is a simple algebra, which is clearly finite
dimensional over E. By ??, we see Z(A®r E) = Z(A) ® Z(E) = E. O

We now come to our main result characterizing central simple algebras:

Proposition 1.4.19. Let A an algebra over a field F. Then the following conditions are
equivalent:

1. Ais a central simple F-algebra,
2. A = M, (D) where D is an F-central division algebra,

3. The “sandwich map” A ® A°® — Endp(A) via a® b — (x — axb) is an
isomorphism,

4. there exists an F-algebra B such that A ® B = M,,(F) for some n,

5. there exists an F-algebra B such that A ® B is a central simple F-algebra,

6. there exists a field extension E/F such that A ® E = M,,(E) for some n,

7. there exists a separable field extension E/F such that AQ E = M, (E) for some n,
8. AQF =M, (1_:) for some n,

9. A be a projective module over the enveloping algebra A @ A°P.

One more equivalent condition we didn’t prove, but which is worth men-
tioning is that A be a projective module over the enveloping algebra A ®r A°P
(i.e. the multiplication map A ® A°? — A splits).
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1.5 Azumaya algebras over commutative rings

To generalize from fields to commutative rings, we define the concept of Azu-
maya.

In the following proposition, for a commutative ring R and a prime p €
Spec(R), we will write x(p) to denote the field frac(R/p) (also called the residue
field of p).

Proposition 1.5.1. For an algebra A over a commutative ring R which is finitely
generated and projective as a module, the following are equivalent:

1. for every p € Spec(R), A ®r «k(p) is a central simple k(p)-algebra,
2. the sandwich map A g AP — Endg(A) is an isomorphism.

Definition 1.5.2. If the equivalent conditions of Proposition hold, we say
that A is an Azumaya algebra over R (also called a central separable algebra
over R).

In order to prove this proposition, we will require a slight detour into some
commutative algebra.

1.5.1 Commutative algebra detour

Recall for a commutative ring R, we write SpecR to denote the collection of
prime ideals of R. For f € R, we write Ry for the localization R[f~'] and for
p € Spec R, we write R, for the localization R[(R\p) ~']. In particular, R, = lim Ry

is the colimit of the rings R taken overall f ¢ p. Weset Dy = {p € SpecR | f ¢ p}
and note that we have a bijection D = Spec Ry via p — pRy.

Definition/Lemma 1.5.3. For a commutative ring R, the sets D¢ form a basis for a
topology, and we define the Zariski topology on Spec R to be the topology generated by
the sets Dy.

For a commutative ring R and a prime p € Spec R, we write R, to denote the
localization of R at p.

Definition 1.5.4. Let R be a commutative ring.

Just as a side comment — it turns out that when A/R is Azumaya it will follow
that A is finitely presented as an R module and is a generator in the category of
R modules (recall that M is a generator if for every other R-module N, there is
a surjective map M® — N for some index set I). So being an Azumaya algebra
imposes serious module-theoretic constraints on an algebra.
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1.6 Galois extension of rings

Much like the story for division algebras, while we may start by wanting
to construct interesting examples of (central) division algebras, it is useful to
consider instead central simple algebras. There are a few natural reasons that
this kind of consideration comes up:

e many natural constructions which sometimes yield division algebras will
often produce central simple algebras instead,

o when we construct central simple algebras, by the Wedderburn structure
theorem, we may find that we have constructed division algebras within
them,

e division algebras are not “preserved by scalar extension.” In other words,
if D/F is a central division algebra, and E/F is a field extension, D ® E
will be central simple, but need not be division.

A very similar discussion arises when considering Galois extension, which
leads us to consider the concept of Galois extensions of the form E/F where E
need not be a field. From here we will then proceed to consider the case where
both F and E are replaced by more general commutative rings (in some analogy
with the concept of Azumaya algebras).

1.6.1 Etale extensions of fields

Let’s start with the generalization of the concept of a (not necessarily Galois)
separable field extension, before considering the Galois case:

Definition 1.6.1 (Etale extensions of fields). Let F be a field. We say that a
commutative F-algebra E/F is étale over F if we can write E as a finite (possibly
empty) product E = X E; where each E; is a separable field extension of F.
i€l
We note that in the literature, one also says that E/F is a separable extension
of rings.

A strange digression into empty rings

Let us take just a moment to discuss the edge case in which the product is
empty. By convention, an empty product is a final object in a category, and
here, considering ourselves to be in the category of unital commutative rings,
we find that this final object is the “zero ring,” consisting of a single element
0 = 1. While this ring is not actually a field (because, for example, its nonzero
elements fail to form a group, not having an identity element), we still consider
the zero ring to be a product of fields, as it is an empty product of fields.
Consequently it is an étale extension of every field.
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1.6.2 Galois étale extensions of fields

We may or may not get to proving all these equivalent conditions, but here
are some ways we can characterize what it means for an étale extension to be
Galois.

Recall the following definition:

Definition 1.6.2. Let S be a ring and G a finite group acting on S as automor-
phisms. We define (S, G, 1), the twisted group ring, to be the algebra generated
by S and symbols u, for o € G, so that as a left S-module we have

(S,G,1) = @ Su,,

oeG
with multiplication given by the rules
Uy = Uy and  Uux = o(x)u,, forx € S,0,7 € G.

Definition/Lemma 1.6.3. Let F be a field and E a commutative F-algebra and let
G < Aut(E/F) be a group of automorphisms of E fixing F. We say that E is a G-Galois
extension of F if the following equivalent conditions hold:

1. |G| = dimp E and EC = F,
(E, G, 1) is a central simple F-algebra,
the natural map (E, G,1) — Endg(E) is an isomorphism,

the natural map (E, G, 1) — Endg(E) is injective (i.e. Dedekind’s Lemma holds),

AR B

we can write E = X),.; Ei with E;/F separable extensions, and such that the
induced action of G on [ is transitive and for each i € I, E;/F is Stabg(i)-Galois.

An important thing to note is that there is generally no canonical choice for
the group G for a given F-algebra E. So, for example, the R-algebra C x C can
be regarded as Galois

e with respect to the group C x C; = (0, T | 0%, 7%) via the action 0(z1, z2) =
(z2,21) and 1(z1,22) = (z1,22), or

o with respect to the group Cy4 =y | y*) via the action y(z1,22) = (22,21)-

1.6.3 Etale extensions of commutative rings

We will come back to this a bit later when considering étale cohomology and
more general descent, but let’s define, as we are now able to, the notions of
what it means for an extension of commutative rings to be étale.

Definition 1.6.4. Let R be a commutative ring. We say that an R-algebra S is
étale if it is finitely presented generated and flat as an R-module, and if, for
every p € Spec(R), we have S ®r x(p) is an étale extension of the field x(p).
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1.6.4 Galois extensions of commutative rings

As with the notion of Azumaya, we are now ready to present the notion of what
it means for an extension of rings to be Galois.

Definition/Lemma 1.6.5. Let R be a commutative ring and S a commutative R-
algebra. Let G < Aut(S/R) be a group of automorphisms of S fixing R. We say that S
is a G-Galois extension of R if the following equivalent conditions hold:

1. for every p € Spec(R), S ®r k(p) is a G-Galois extension over x(p),
2. (5,G,1) is an Azumaya algebra over R,
3. the natural map (S, G,1) — Endg(S) is an isomorphism.

While not obvious from the definitions, the condition that S/R is G-Galois
also imposes strong module-theoretic constraints on S, namely that S is a
finitely generated projective R-module which is a generator in the category
of R-modules. These conditions also imply that S® = R (as expected from usual
Galois theory).

1.7 Galois Descent — an equivalence of categories

One important consequence of Definition/Lemma this is that the Morita
theorems apply (see Proposition|A.1.2), and we obtain an equivalence of cate-
gories as follows:

Lemma 1.7.1. Let S/R be a G-Galois extension of commutative rings. Then we obtain
an equivalence of categories

R-modules < (S, G, 1)-modules
M— S®@r M

via the standard (S, G, 1) = Endg(S)-module structure on S.

We can make this particularly useful by recalling the notion of semilinear
actions.

Definition 1.7.2. Let G be a group acting on a commutative ring S and let M be
an S-module. A G-semilinear action on M is an action of G on M as an Abelian
group such that for each 0 € G, m € M, x € S, we have o(xm) = o(x)o(m).

A G-semilinear S-module is defined to be an S-module with a G-semilinear
action.

We may then consider the category of such G-semilinear S-modules and
observe that this category is also equipt with a tensor product (monoidal)
structure. That is, if M1, M, are G-semilinear S-modules, we can define M; ®s M,
to have a G-semilinear action via

o(m ®my) = a(my) ® a(my).
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With this notion, we can then define the notion of a G-semilinear S-algebra (via
its structural maps such as A ®s A — A satisfying various axioms).
We note the following fact, which is easily verified via the definitions:

Lemma 1.7.3. Let S be a ring with an action of a group G. Then there is an equivalence
(actually an isomorphism) of categories between (S,G,1)-modules G-semilinear S-
modules.

Combining Lemma with Lemma we obtain the following:

Theorem 1.7.4 (Galois descent). Let S/R be a G-Galois extension of commutative
rings. Then we obtain an equivalence of categories

R-modules <> G-semilinear S-modules
M— S®r M
N¢ < N.

Furthermore, this equivalence respects tensor products.

We verified implicitly that one of these directions gives an equivalence (at
least, by quoting Morita theory). The other direction is given in the exercises.

1.8 Galois Descent —twisted forms and obstructions

The fundamental question of Galois descent is the following: given a G-Galois
extension of commutative rings S/R, how can one go between algebraic struc-
tures over R and algebraic structures over S? We can phrase this in terms of two
concrete questions:

Question 1.8.1. Given an R algebra A, how can we describe all R algebras A’ such
that AQ S=A'"®S?

Question 1.8.2. Given an S algebra B, when can we find an R algebra A such that
A®S=B?

Twisted forms and H!

Question[1.8.1]is in large part the subject of the exercises, and we recall here the
conclusions. In the context of Theorem [1.7.4, we can reframe this first question
as follows. Given a semilinear action of G on an S-algebra B (for example,
B = S® A), how can we describe all other semilinear actions on B. These
other actions, via Theorem would correspond to R-algebras A’ such that
S ® A’ = B. Recall the following definitions:

Definition 1.8.3. Let X, Y be sets with action by a group G. Then we obtain a
natural action on the set of maps Map(X,Y) via (o - f)(x) = a(f(0~}(x))).
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Definition 1.8.4. Let G, A be groups, and suppose we have a homomorphism
G — Aut(A) providing an action of G on A. We say thatamapa: G — Aisa
crossed homomorphism, or a 1-cocycle, if

a(ot) = a(o)o(a(t)), Vo,1eG.
We write Z!(G, A) for the set of all crossed homomorphisms.

Definition 1.8.5. The group A acts on Z'(G, A) via (a- @)(0) = aa(o)o(a)~!, and
we define H'(G, A) = Z'(G, A)/A to be the set of orbits under this action.

We note that in the case A is an Abelian group, this corresponds to the
standard group cohomology construction, and the sets Z!(G, A) and H}(G, A)
have natural group structure given by pointwise multiplication in A. In general,
however, these are just sets with distinguished elements (pointed sets), where
the distinguished element comes from the crossed homomorphism G — A
sending all elements to the identity.

Proposition 1.8.6. Let B be a G-semilinear S-algebra, with action written as (0,b) —
ob. Consider the G-action on Autg(B) given by Definition Then if we have any
other G-semilinear actionon B, (0, b) — 0-b, then we may find a crossed homomorphism
a : G — Autg(B) such that
o-b=a(o)ab,

and this gives a bijection between crossed homomorphism and semilinear actions.

Further, if a, B € Z1(G, Auts(B)) are crossed homomorphisms, then the resulting
semilinear algebras are isomorphic if and only if o and B are in the same Auts(B) orbit.
In particular, we have a bijection between isomorphism classes of algebras A’ /R such
that S® A’ = B and the pointed set H'(G, Auts(B)).

Descent obstructions and H?

We now consider the Question — given an S-algebra B, when can we find
an R-algebra A such that S®g A = B? In light of Theorem this is equivalent
to asking the question of when we are able to define a semilinear action of G on
B.

To make this easier to work with, let’s define a bit of language:

Definition 1.8.7. Let B be an S-algebra and let 0 be an automorphism of 5. We
define a new S-algebra, denoted ?S to have underlying set °x, x € S (that is,
there is a bijection between the elements of B and ?B), with operations:

xrly="(x+y),  C0Cy="(y), VxyeB
and with S-module structure given by:
A% =%(c " (A)x), VAeS,xeB,

or in other words, o(A) “x = 7(Ax).
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Example 1.8.8. As an example, note that if B is an S-algebra with a free S-module
basis e; and with multiplication table given by

eiej = Zcfjek,
k
then the algebra ° B has multiplication table given by
‘ei’ej = ZG(CIZ]‘) .
k

Now, back to the case of a G-Galois extension S/R and an S-algebra B, we
would like to ask whether or not it is possible to define a semilinear action of
G on B. This amounts to defining, for every o € G a “possible action,”

¢s:B—B

which will satisfy ¢, (Ax) = 0(A)Ps(x) for A € S, x € B, and such that ps¢r = Pyr.
One complicating factor is that such maps ¢, are evidently not S-linear, but we
can change our perspective by considering the corresponding maps ¢, : °B — B
given by ¢,(°x) = ¢, (x). For this map, we find

Yo(A x) = lpo(o((j_l(/\)x)) = ‘PU(U_l(A)x) = A (x) = AYs("x),

which allows us to encode the information of ¢, as an S-linear map 1. If we
let 0 : B — 9B denote the map x — °x (which we can think of as a “universal”
o-linear map), then we can consider this via the following diagram

Yo

O‘Bé

1

B——B

[on

as ¥, (x) = 0(¢,(c71x)). More generally, we may “twist” these to obtain maps

oTR "1,075 9B

'B——B

UIPT . U’TB — UB,
T = (e (Px)) = e (%).

This perspective allows us to interpret the condition ¢;¢; = ¢4; in terms of
S-linear maps. That is, we have

Yor : 7'B — B,
7Tx = Pgr(X),
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and,

l/}gol/% - 0TB _, B,
X = o (x).

Consequently, the condition ¢,¢p; = ¢4 corresponds to the condition ¢5; =
Yot

Analyzing the possibilities, we see:
Case 1: ?B and B are not isomorphic for some o € G.
In this case, there is no possible way that ¢ can act on B, and so no hope for
defining a semilinear action of B. Consequently, there is no algebra A/R such
that S® A = B.
Case 2: There exist isomorphisms ¢, : °B = B for each 0 € G.
In this case, we need only consider whether or not these can be chosen so
that Yor = Ys°Y,. To measure our “distance” from this condition, and make a
connection with group cohomology, we defineﬁ

Blo,7) = Y, ,"t, € Auts(B).

We are successful if we can choose ¢, so as to make f(o,7) = 1 for all g, 7.
Tracing the following diagram:

Pory

g Y e ¥ gV B

Yor

lpd'[)/

we find

Blom,y)B(o,7) = Blo,7y) Ya"B(T,7)¥5 .
which we can think of as a nonabelian version of a 2-cocycle condition, although
we won't try to define this “cohomology set” precisely here.

Of course, changing our isomorphisms ¢, (and hence the maps ;) will
alter our choice of p’s. More precisely, if ¢, : B — B is another o-linear
isomorphism, with corresponding isomorphism ), : °B — B, we see that
V! = p(o) € Auts(B), and so ¢, = p(0)y, for some unique automorphism
p(o), and conversely, different choices of isomorphisms ¢ correspond to arbi-
trary functions p : G — Autg(B). Given such a p corresponding to ¢’, we find
that the corresponding g’ is given by

B'(0,7) = (W) WL, = il p(o7) T p(0)s “p(T) T

4note, this is a somewhat different convention than the one we did in class
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In general, this is a difficult formula to interpret, but with sufficient commuta-
tivity, it will reduce to the standard notion of 2-cocycles and their equivalence
via differing by a coboundary:.

We note that the previous machinery, which was introduced in the context
of ring extensions, works perfectly well for schemes as well. Let’s gather these
definitions and observations in this situation:

Definition 1.8.9. Let X = (X, Ox) be a scheme and let A be a quasicoherent
sheaf of associative Ox algebras. We say that A is Azumaya if for every affine
open set SpecR = U < X, A(U) is an Azumaya algebra over R.

We see, essentially as a consequence of Proposition[1.5.1} that we can char-
acterize Azumaya-ness as follows. Here for a scheme X and a point x € X, we
write x(x) for the residue field of x — that is, x(x) = Oxx/mxy. If  is a sheaf of
Oy algebras, we write ¥ |, to mean ¥, ®o,, x(x).

Proposition 1.8.10. For a scheme X and A a locally free and finitely generated sheaf
of associative Ox algebras, the following are equivalent:

1. Ais Azumaya,
2. for every point x € X, Al is a central simple algebra over x(x),

3. the sandwich map A o, AP — &ndo, (A) is an isomorphism (here £nd
denotes the endomorphism sheaf).

Proof. We leave the verification of this as an exercise, via Proposition[I.5.1] O

Next, we define the notion of an étale morphism, relying on the correspond-
ing definition for rings from Definition[1.6.4}

Definition 1.8.11. Let f : X — Y be a morphism of schemes. We say that f is
étale at x € X if there exists an affine open neighborhood SpecB = V < X of x,
and an affine open neighborhood SpecA = U < Y containing f(U), such that
B is an étale ring extension of A.

One thing that this definition should emphasize is that this definition is
local on Xﬂ The following definition connects more directly to Definitionm

Lemma 1.8.12. Let f : X — Y be a morphism of schemes. Then f is étale if and only
if it is flat, locally of finite presentation, and for every y € Y, the fiber X, = X xy y is
the spectrum of an étale (commutative ring) extension of the field x(y).

Proof. [?, Tag 02GM] m]

Let’s now define the notion of a Galois extension of schemes. Note that,
unlike the case of étale ring extensions, Galois extensions of rings are necessarily
flat and locally free of finite rank. In particular, these are module finite maps. It

5as an illustrative example, the doubled affine line mapping to the affine line is, locally on the

domain, an isomorphism and hence étale
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follows that the corresponding type of map for schemes would be a finite map,
and as such would be affine. Hence, we can talk about Galois extensions either
as morphisms of schemes f : X — Y, or as coherent sheaves of commutative
Oy-algebras corresponding to f;.Ox.

Definition/Lemma 1.8.13. Let Y a scheme and R a sheaf of commutative Oy algebras,
which are locally free of finite type as Oy-modules. Suppose that G is a finite group of
Oy-linear automorphisms of R. We say that f is a G-Galois extension if the following
equivalent conditions are true:

1. for every open affine SpecS < Y, R(SpecS)/S is G-Galois,
2. the sheaf of algebras (R, G, 1) is Azumaya over Oy,
3. the natural map (R, G,1) — &ndo, (R) is an isomorphism,

4. for every y € Y, R|, is a G-Galois commutative ring extension of the field x(y)

(as in Definition/Lemma 22).

The machinery of Section[I.8|goes through as previously described, and we
will work through it via an example:

1.8.1 Galois descent for line bundles
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Chapter 2

Geometry

2.1 Etale descent — an equivalence of categories

We would like to ask a question which is analogous to those we asked in
Section in the context of morphisms of schemes. Namely, for a morphism
of schemes 7 : X — U, how can one go between structures on U and structures
on X. That is, we have a natural functor ©*, taking sheaves on U to sheaves
on X. In some sense, this is a forgetful process. We would like to know how
much information is lost, and what additional information is needed to “go
backwards.”

We will use the psychological crutch of considering the case that X is a
disjoint union of schemes X = LU; so that the individual morphisms 7; : U; —
U are étale morphisms. But we will visualize these maps as open covers in
terms of intuition. We will write U; i for the fiber product U; x uj;, which we
will think of as the analog of the intersection of two open sets. Similarly we
define U; jx as the triple fiber product U; x; U; x Uy, etcetera. We write 71; ; to
denote the map U; xy U; — U (via the equal morphisms induced by 7; or 7).

In order to reduce the notational clutter, if .% is a sheaf of Oy-modules, we
will write .7|; j to denote the sheaf n:j%, j-and similarly for triple fiber products,
etc.

So as to eliminate all possible suspense, let us simply give the “answer:” We
first recall the notion of an étale covering:

Definition 2.1.1. Let U be a scheme and % = {m; : U; — U} a family of
morphisms. We say that % is an étale covering of U if for all i, 7t; is an étale
morphism, and if the family is jointly surjective. That is, if for every y € U a
scheme-theoretic point, there exists u € U; for some i a scheme theoretic point,
such that 7t;(u) = y.

Definition 2.1.2. If = {m; : U; — U} is a family of morphisms, we define
the descent category Desc(%, QCoh) to be the category whose objects are pairs
((Fi), (¢i;)) where each F; is a quasicoherent sheaf over U; and where ¢;; :
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Filij — ¥;lij are isomorphisms such that for all 7, j, k, we have

Qiklijk = Piklijk © Pijlijk-

Note that in the case where % is an open covering, this is just describing
gluing data for sheaves (see [?, Exercise 11.1.22]). We say that descent holds if
sheaves are exactly described by such gluing data. Note that there is always
a canonical functor QCoh;; — Desc(%,QCoh) taking a sheaf ¥ on U to the
tuple ((¥;),(1;)), where 1;; represents the canonical identification of 7|;; ;
with 7 ;|;; (both being canonical equal to F; ;).

Theorem 2.1.3 (Etale descent). Let {m; : U; — U} be an étale covering. Then
the natural functor QCohy; — Desc(%,QCoh) given by ¥ — ((F i), (1)) is an
equivalence of categories.

Proof. See (for a somewhat more general context) [?, Tag 023T]. O

2.2 Sites, sheaves and stacks

In fact, and possibly we should have started here, descent is closely tied to the
notion of a sheaf itself in the context of a Grothendieck topology.

Definition 2.2.1 (Grothendieck topologies and sites). Let C be a category. A
Grothendieck topology 7 on C is a set whose elements are collections of mor-
phisms with common codomain {U; — U}e;, which we call covers, with the
following properties:

1) if {U’ — U} is a family consisting of a single isomorphism, then {U’ —
U} e,

2) if {U; - U} € tand V — U is a morphism in C then the fiber products
U; xy Vexistand {U; xy V — V}er,

3) if {U; — U} € tand if {V;; — U;} € 7 for each i, then the family obtained

by compositions {V;; — U} is also in 7.

We define a site to be a pair C = (C,7¢) where C is a category and 1¢ is a
Grothendieck topology on C.

Example 2.2.2 (the site of a topological space). Let X be a topological space.
The category Op(X), whose objects are open subsets of X and whose morphisms are
inclusions admits a Grothendieck topology by declaring that the open covers are families
of inclusions {U; — U} which are jointly surjective (i.e. which cover U).

This is the main motivating example, and the notation which is often used
for sites reflects this. The following definition is a typical case in point.
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Example 2.2.3 (the big site of a topological space). Let X be a topological space. This
time, we will consider the category slice category Top/X whose objects are continuous
maps Y — X. We define a Grothendieck topology on Top/X by saying that a family
{({U; - X) - (U — X)} is a covering if and only if the maps f; - U; — U define
homeomorphisms between U; and open subsets f(U;) of U, and if the f(U;) cover U.

Remark 2.2.4 (the big site of all topological spaces). In Example one could
drop X and simply consider the category of all topological spaces. On the other
hand, if we take X to be a point, this is exactly what happens.

Example 2.2.5 (the Zariski site of (relative) schemes). Here we can let S be a scheme
and consider the slice category Sch/S of S-schemes. Following the idea of Example[2.2.3]
we can define a Zariski cover {f; : U; — U} of S-schemes to be a family of maps of
S-schemes such that the f; are open immersions and the open sets f;(U;) cover U.

Example 2.2.6 (the big étale site of a scheme). Let S be a scheme and consider
the slice category Sch/S of S-schemes. Again following Example we say that
{fi : U; — U} is an étale cover of S-schemes when the maps f; are étale and the open
setsﬂ fi(U;) cover U.

Example 2.2.7 (the small étale site of a scheme). Let S be a scheme and consider the
subcategory of the slice category Sch/S of S-schemes consisting only of étale morphisms
to S. Again, we say that {f; : U; — U} is an étale cover of S-schemes when it is a cover

in the sense of Example

Definition 2.2.8 (Morphisms of sites). Let (C, 7¢), (D, tp) be sites. A morphism
of sites f : (C,7¢) — (D, 1p) is a functor f~! : D — C such that for every cover
{U; — U} € 1p, the family of morphisms {f~'U; — f~'U} is in 7¢.

In particular, a continuous map of topological spaces f : X — Y induces a
morphism of the corresponding sites via the actual inverseimage f~! : Op(Y) —
Op(X). On the other hand, it need not be the case that a general map of sites
should arise from a continuous map of topological spaces.

Remark 2.2.9 (Site morphism warning!). The notation for sites and morphisms
is an imperfect solution to an awkward problem. We would like to think of sites
as akin to topological spaces, but the underlying categories have morphisms
going in the opposite direction. For example, given sites (C,7¢) and (D, 7p),
a morphism of sites f : (C,7¢) — (D, 7p) might, with conventional abuse of
notation C = (C,t¢) and D = (D, tp) as f : C — D, which starts to look very
much like we are describing a functor between the underlying categories and
not a morphism of sites. For this reason, one needs to be very careful to specify
whether or not one is talking about a morphism in the sense of sites, or a functor
on the underlying categories.

Definition 2.2.10 (Restriction). Given a site C = (C,7¢) and an object U € C,
we define a new site C|y; to be the site whose underlying category is the slice
category C|lU of morphisms to U, and whose covers are those families {(V; —
U) — (V — U)} whose image {V; — V} via the forgetful map to C is in 7¢.

Irecall that étale morphisms are flat and finite presentation, hence open
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Remark 2.2.11. The functor on underlying categories C|U — C gives a mor-
phism of sites C — C|y, but this is not an intuitive geometric morphisms from
the perspective of topological spaces in general (as it would correspond to a
topological map of a space to an open subset).

On the other hand, given a morphism V — U in C, we obtain a map
Clv — Clu of sites which is the analog of “inclusion” of open sets. This works
via sending (W — U) to (W xy V — V).

In particular if C itself has a terminal object *, one obtains a morphism of
sites C|ly — CJ« = C which is an analog of the inclusion of an open subset into
an ambient space.

2.2.1 Sheaves on sites

Definition 2.2.12. Let C be a site and .%# : C°? — D a presheaf (=contravariant
functor) with values in some other category D. We say that .# is a sheaf if for
every cover {U; — U}, the natural map .# (U) — [ [ .#(U;) realize .# (U) as the
equalizer of the diagram

[ TR =] [F(sy.
i ij

Note that in particular, if C has an “empty set” in the sense of an object ¢
for which the empty set is a cover of ¢J¢, then it would follow that for .# a
sheaf, .7 () would be a terminal object in D (so, for example, a singleton in
Sets, the zero group in Abelian groups, or the zero ring in Rings).

Theorem/Exercise 2.2.13. Sheaves satisfy descent. That is, for a site C and a covering
U = {m; : U; — U}, the natural functor Shv,, — Desc(%,Shv) given by F —
((F i), (1; 7)) is an equivalence of categories.

Proof idea. Verification of the fact that this map is fully faithful is relatively
straightforward. For essential surjectivity, this amounts to extending a sheaf on
a cover to a sheaf on the whole space U via application of the sheaf axiom of
Definition[2.2.12)and then checking that this indeed defines a sheaf (i.e. that the
sheaf axiom continues to hold on general covers). m]

Remark 2.2.14. This idea can be extended to sheaves with extra structure —
that is to say, the same result will hold when considering sheaves of groups,
sheaves of Abelian groups, sheaves of rings, sheaves of modules or algebras
over a given sheaf of rings, etcetera.

2.2.2 Stacks on sites

We begin with a notion which is a weak analog of a functor in a 2-categorical
context. While we won't recall the full definition of a (strict) 2-category, we
note the relevant structures for the 2-category Cat of categories, which are the
horizontal and vertical compositions of natural isomorphisms.
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For categories A, B, the collection of functors F : A — B themselves form a
category, and the morphisms in this category are refered to as natural transfor-
mations. We use double arrows to denote these natural transformations as in
a : F = G. Composition in this category of functors we refer to as vertical com-
position. On the other hand, if we have categories A, B, C, functors F,G: B — C
and H : A — B and a natural transformation « : F = G, we obtain a natural
transformation «oH : FH — GH, which we call the horizontal composition of &
and H. As these can be notationally cumbersome, we will occasionally simply
write « in place of a o H.

Definition 2.2.15 (pseudofunctors). Let C be a category. A psudofunctor from
C valued in categories . : C — Qat is a rule which associates

1. to every object U € C a category .7 (U),
2. to every morphism f : U — Vin C a functor .7 (f) : S (U) — #(V),

3. to every pair of composable morphisms, g: U — V, f : V — W, a natural
transformation . (f, g) : (f)L(g) = L (fg).

These should satisfy the following axioms:

(@) #(idy) coincides with the identity functor id () on the category
Z(U),

(b) givenatripleof composablemapsh:U — V,g:V > W, f: W — Z, we
can apply .Z(f,g) o Z(h) : L ()L (9)Z(h) = Z(fg)L(h), followed
by L(fg, h) : L (fg)-7(h) = .#(fgh) to obtain natural transformation
L(f)S(9)F (h) = Z(fgh). A similar natural transformation can be
obtained by first applying . (f)o.”(g, h) and then .7 (f, gh). We require
that these compositions coincide. That is, that:

S (f& (L (f,8) 0 7 (W) = 7 (f,gh) (7 (f) o L (g, h))

as natural transformations from . (f).#(g)-~ (h) to .’(fgh) between
functors from U to Z.

Notation 2.2.16. Let C be a site and let {r; : U; — U} be a covering in C. We
will use the notation Uj; to denote the fiber product U; x ¢ U; in C, and U; jx to
denote U; xy U; xy Uy, and so on.

If.7 : C% — GQatisa pseudofunctor, and s € . (U), we will write s|; to denote
& (1) (s). Similarly, if we write 7'(;]. for the canonical map U; xy U; — Uj, then

for s; € .7 (U;), we will write s;; j to denote . (rt! j)(s,-), and so on.

Definition 2.2.17 (Descent data). Let C be a site and let . : C%? — Cat be a
pseudofunctor. Let % = {n; : U; — U} be a covering in C. We define the descent
category Desc(%,.”) to be the category whose objects are pairs ((s;), (¢;))
where each s; € /(U;) and where ¢;; : 5;|;; — sj|; ; are isomorphisms such that
for all i, j, k, we have

Pikl; ;1 = (p]'rk‘i,j,k © qbirf‘i,j,k'
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A morphism of descentdata f : ((s;), (¢:,)) — ((t:), ({i;)) consists of morphisms
fi 1 si — t; which yield commutative diagrams:

f,-l lf/’

bl ———

Vijj tj |i,]' ’

Remark 2.2.18. If C is a site, ¥ : C% — (at is a pseudofunctor, and % = {m; :
U; — U} be a covering in C, then we can define a functor

€: S (U) — Desc(%,.)

which is describe on objects as follows. Write 7; : U; — U, m;; : U;; — U
and nﬁ]. : U;; — U;. For an object s € . (U), we let €(s) = (s|;,1;;) where
1ij o sl i s| ]-|l,], denotes the canonical identification given as:

l,'/j

S|i|i,j s‘j|1}]’
| il
L) Z(m)(s) (1] ).S (1)) (s)

1,] L]
(V(Tff/]»rﬂi)(s) Y(n{,/,nj)*l(s)

Definition 2.2.19 (stacks). Let C be a site. We say that a pseudofunctor .7 :
C” — Qat is a stack if for every covering % = {n; : U; — U} in C, the natural
functor

S (1i)(s)

€: S (U) — Desc(%,)
from Remark [2.2.18]is an equivalence of categories.

Now, conventionally stacks are restricted to having images in groupoids
instead of general categories, although this is not particularly essential.

Definition 2.2.20 (groupoids). We say that a category G is a groupoid if each
of its morphisms is invertible. Let ®pd be the sub 2-category of Cat consisting
of groupoids.

Definition 2.2.21 (stacks (conventional definition)). Let C be a site. We say that
a pseudofunctor .’ : C — ®pd is a stack if for every covering % = {m; : U; —
U} in C, the natural functor

€:S(U) — Desc(%,.)

from Remark [2.2.18|is an equivalence of categories.
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2.2.3 The site of a stack

Given a site, we can now talk about the notion of stacks on the site. It turns
out, that associated to any such stack is another site, which we can think of as
analogous to the espace étale of a sheaf.

Definition 2.2.22. Let C be a site and let .# be a stack on C. We can associate
to 7 a site s(S) which comes equipped with a functor s(S) — C. The objects
of s(8) are pairs (U,s) where U € C and s € . (U). A morphism (U,s) — (V)
is a pair (f, ¢) consisting of a morphism f € Hom¢(U, V) and an isomorphism
¢ s — L(f)(t). We say that a family of morphisms {(U;,s;) — (U s)} is a
covering family if the collection {U; — U} is a covering family in C. The functor
5() — Cis given by (U,s) — U.

To motivate this definition, we should be thinking of .7(f)(t) as playing

the role of a pullback of t along the map f : U — V (in this analogy, we are
thinking of s and ¢ as representing, for example, families of schemes over U
and V respectively). From this perspective, it is reasonable to denote . (f)(f)
as t|y. Intuitively, therefore, to find a morphism s — t which is compatible with
the morphism f : U — V is equivalent to finding a map from s to the pullback
Hu = Z(F)(®)-
Remark 2.2.23 (Relation to fibered categories). One may also define stacks
using the equivalent formulation of fibered categories. While we won’t go into
this definition here, we note that for a stack . on a site C, the functor s(.¥) — C
has the structure of a fibered category, and will yield a stack via the standard
definition in terms of such fibered categories.

2.3 Cohomology

Let C be a site. For an object U € C, we obtain a functor I'; : abShv . — Ab via
I'y(#)=2(U).

2.4 Ringed spaces and sites

Definition 2.4.1. A ringed space is a pair X = (X, Ox) where X is a topological
space and Ok is a sheaf of rings on X. If Y is another ringed space, a morphism
of ringed spaces f = (f, f*) : (X,0x) — (Y,Oy) is the data of a continuous map
f: X — Y together with a morphism of sheaves of rings f* : Oy — f,Ox.

Recall that a homomorphism of local rings ¢ : R — S is called a local
homomorphism if ¢(mg) < mg (or equivalently if 1 (mg) = mg as we assume
ring homomorphisms are unital).

Definition 2.4.2. A locally ringed space is a ringed space X such that for every
x € X, the stalk Ox, is a local ring. A morphism of locally ringed spaces is a
morphism of ringed spaces f : X — Y such that the induced maps on stalks
Oyf(x) — f+Oxx is a local homomorphism.
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We’d like to consider not only ringed spaces — that is, sheaves of rings
on topological spaces — but also ringed sites. For this there is an additionaly
subtelty of not being able to refer to a notion of points and stalks.

Definition 2.4.3. A ringed site C = (C,Oc) is a site C together with a sheaf of
rings O¢ on C. A morphism of ringed sites f : (C,O¢) — (D,O9p) is a functor
fl:D->cC

2.5 Etale (and general) Descent — twisted forms and
obstructions

Let us now ask the same questions we asked before for étale covers, which we
asked previously for Galois extensions. In fact, in light of Remark we can
really consider this in the context o a general site, perhaps with a sheaf of rings.
We will ask this concretely in the context of quasicoherent sheaves of algebras
over schemes with respect to the étale topology, and we will phrase things in
this way, but we could also ask this for other types of algebraic structures over
more general sites as well. So, suppose that {r; : U; — U} is an (étale) covering.
We may ask the following questions:

Question 2.5.1. Given a sheaf of Oy algebras A, how can we describe all other sheaves
of Oy-algebras A’ such that 7* A = 1* A’ for all i?

Question 2.5.2. Given sheaves of Oy, algebras B;, when can we find a sheaf of Oy
algebras A such that 7} A = B, for each i?

As before, we will write, for notational convenience, such things as A|; for
FA.
1

Twisted forms and H!

To answer Question [2.5.1) we note that by Theorem [2.1.3} it suffices to consider
the following question: if we are given descent data B, = ((8;), (¢;;)) for an
algebra with respect to the cover U = {U; — U}, we need to consider what
other possible descent data we are able to define. Before we proceed, let’s make
a quick notational comment:

Clarification 2.5.3 (Automorphisms of sheaves versus sheaves of autmorphisms).
Here when we have a sheaf of algebras A and we write Aut(A), what we mean
is the group of automorphisms of the sheaf A. That is, such an autormophism
is a natural transformation of functors (i.e. a morphism of presheaves) A — A.
One may also consider the automorphsim sheaf .z7ut which on some U is de-
fined via @/ut(U) = Aut(Aly). This should not be confused with the presheaf
which associates to each U the group of automorphisms of the value of the
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sections on U, Aut(A(U)). However, one can check that «7ut(A) is the sheafi-
fication of this presheaf and Aut(A) is the group of global sections of the sheaf
g/ ut(A).

Similarly, for sheaves of algebras A, A’ we can analogously define the sheaf
of isomorphisms .#so(A, A’) and its global sections Iso(A, A’) consisting of
“global isomorphisms.”

In analogy to Definition[I.8.3} our descent data B, gives rise to descent data
forits automorphisms —that is, we can define descent data ((=/ut(8;)), (@ ut(¢;,)))
for a sheaf (and hence an étale sheaf by Theorem/Exercise[2.2.13which we could
call @/ ut(8B,) as the sheaf &/ut(B;) on U; and with

ISO(B,‘L’J, .'B]'|1'/]') 3 ,dut(qbi,]-) : EQ{Ut(Bi)‘i,j — ﬂut(B]’)h/]’

viafor V — U;jand f € Aut(8;)(V), we have Aut(¢; ;) (V)(f) = ¢ijlvf qb;],l|v.

Note that in the case B, arises from a sheaf of Oy-algebras A, we would
simply have that the descent data for 8 would be given by ((Al;), (ida;,;)) and
Aut(8) would be given by ((Aut(Al;)), (Aut(idg,;))) corresponding simply to
the sheaf Aut(A). In fact, by Theorem[2.1.3] such an A always exists, so we can
assume, without loss of generality, that 8, has this form. This gives a significant
notational simplification.

With this in mind, we can assume we start with a sheaf of algebras A, and
want to find all possible descent data of the form ((Al;), ¢;;). In this context,
11[)1‘,]' € Aut(ﬂ‘i,j)

Definition 2.5.4. For a sheaf of groups 2 on a site C and a cover U = {U; — U},
we define the pointed set Z! (U, A) = {(@ij) e [TWUi)) | Yig = Pixij}-
The following is essentially immediate from the defnitions:

Lemma 2.5.5. Let A be a sheaf of algebras. Then we have a bijection between
ZNU, o/ ut(A)) and descent data of the form ((A;), (i)

In this way, we have parametrized all possible A’ such that A'|; = A|;,
however there is some amount of double counting. That is, we may have
different descent datum ((A;), (i), ((A:), (1/J:])) which are isomorphic (as

descent data) and

2.6 (mostly March 27) Azumaya algebras over lo-
cally ringed spaces

In this section, we’ll consider the notion of Azumaya algebras in the context of
locally ringed spaces (or sites). So, suppose that X is a site (that is, a category
equipped with a Grothendieck topology as in Definition [2.2.T), together with
a sheaf of ringes Oy. In principle there may be many ways to try to define the
notion of an Azumaya algebra over X. For example, we could say that it is a
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sheaf of Ox-algebras A such that the natural map A ®p, AP — &ndo, (A)
is an isomorphism, or we could use one of the many other notions motivated
by Proposition In fact we will use one which was not part of our prior
characterization of Azumaya algebras over rings (see Proposition[L.5.1), and it
won't be until a bit later until we see that these notions are compatible (see ??).

Definition 2.6.1 (Azumaya algebras over a ringed site). Let X = (X,Ox) be a
ringed site. We say that a sheaf of algebras A is Azumaya of rank # if for every
object U in X, there exists a covering {U; — U} such that the restriction Ay, is
isomorphic to the sheaf of matrix algebras M,,(Ox).

Asbefore, we can define both a monoid structure on the collection of isomor-
phism classes of Azumaya algebras, and an equivalence relation which turns
this monoid into a group. Recall that if X is a locally ringed space, a sheaf V of
Ox-modules is locally free of rank n if for every U € X, there exists a covering
{U; — U} such that V|, = O%.

Definition 2.6.2. We define an equivalence relation on the isomorphism classes
of Azumaya algebras, called Brauer equivalence to be the equivalence relation
generated by the relation consisting of A ~ A ®o, &ndo, (V) where V is a
locally free sheaf of Ox-modules of rank # for some #.

Definition 2.6.3 (Azumaya Brauer group). For a ringed site X, we define the
Azumaya Brauer group Br'*(X) of X to be the set of Brauer equivalence classes
[A] of Azumaya algebras A over X, with the operation [A] + [B] = [A®o, B].

Verifying that this operation is associative and that [Ox| provides an additive
identity element is straightforward. To see that we have inverses, we note that
there is a canonical map

ARQA® — &nd(A)

as before given by a ® b — (x — axb). To finish, we need only check that this
is an isomorphism of sheaves of algebras, which is to say that for every U,
there exists a cover {U; — U} such that the restriction of this map to U; is an
isomorphism. But by definition ??, restricting to U; allows us to assume that
A = End(V) for some free Ox-module V. The result then follows from the
observation that for any commutative ring R, the natural map

M, (R) ® M,,(R) — Endg(M,(R)) = M,2(R)

is an isomorphism. This in turn can be seen by observing the map on matrix
units
eij ®exe = (epq = 0jpOxq€ic)
which is to say that if we regard M, (R) as having matrix units e, )« relative
to a basis indexed by {1,...,n}?, we see this is described by
€i,j @ ek = e, (kj)

and hence is an isomorphism (as it takes an R-module basis to a R-module
basis).
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Definition 2.6.4 (Cohomological Brauer group). Let X be a ringed site. The co-
homological Brauer group Br™ (X) of X is defined to be the group H2(X, G,,)!",
that is, the torsion part of the second cohomology with coefficients in the mul-
tiplicative group.

To see how these groups relate to each other, we will need to consider the
exact sequence
1-G, —GL, - PGL, -1,

and cohomology sequence
H'(X,G,) — H'(X,GL,) - H'(X, PGL,) — H*(X,G,,). (2.1)
These sheaves of groups are defined as follows.

Definition 2.6.5. Let X = (X,0Ox) be a ringed site. We define the sheaf of
groups GL, on X by U — GL,(Ox(U)), and G,, = GL;. We have a natural
“diagonal” map G,, — GL, and we let PGL,, be the sheafification of the presheaf
U — GL,(0x(U))/Gn(0x(U)). That is, PGL, is the sheaf quotient GL,/G,,.

2.6.1 (Not from lecture) When is the projective general linear
group a quotient?

Somewhat unintuitively, it need not be the case that PGL,(U) = GL,(U)/G,,(U).
Indeed, we can understand this from examining aspects of the sequence (2.1).
This will take us a bit to unpack though:

unpacking the exact sequence (2.1)

Via descent, we may interpret the pointed sets H(X,G,,), H'(X,GL,) and
H'(X, PGL,) by considering the groups G, GL, and PGL, as sheaves of au-
tomorphisms. In particular, we find that G,, is the sheaf of automorphisms of
Ox as a sheaf of modules over itself and GL, is the sheaf of automorphisms of
O}, as a sheaf of modules. Consequently, H' (X, GL,) is in bijection with isomor-
phism classes of sheaves of modules over Ox which are locally isomorphic to
O — that s, locally free sheaves of rank 7. In particular, HY(X, G,) corresponds
to locally free sheaves of modules of rank 1. The natural map G,, — GL, diag-
onally then can be interpreted as taking a locally free sheaf N of rank 1 to N", a
locally free sheaf of rank n.

Let M,, denote the sheaf of matrix algebras given by M,,(U) = M, (Ox(U)).
In favorable circumstances (for example for X a locally ringed space, as we will
describe in Lemma2.6.12]and Proposition[2.6.13), we will find that conjugation
induces an identification of sheaves PGL, = Aut(M,). We think about the map
GL, — PGL, as taking an automorphism of R" to the corresponding “change
of basis” on its ring of linear transformations M, (R). We can then show that the
map from GL, to PGL, is given by associating to a locally free sheaf M of rank
n, its endomorphism sheaf of algebras &nd(M).
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Definition 2.6.6. Let N be a sheaf of Ox-modules. We say that N is n-free if
N" = O%.
b'e

The n-free line bundles form a subgroup of the Picard group - if P,Q are
n-free then

(PRQ)"=PRQ®O,=P®(Q®0L) =PRIL =0,
and consequently, P ® Q is n-free as well.

Definition 2.6.7. Let X be a ringed site. We let Pic(,,)(X) denote the subgroup of
Pic(X) consisting of those locally free sheaves of rank 1 which are n-free. If R is
a commutative ring, we similarly write Pic(,)(R) to denote Pic(,)(Spec R). That
is, isomorphism classes of projective R-modules N of rank 1 such that N" = R".

Lemma 2.6.8. For any ringed site X, Pic(,)(X) is n-torsion.
Proof. Let N € Pic(;)(X). Then N®" = A"N" = A"O)} = Ox. o

Remark 2.6.9. Asa partial converse to Lemma[2.6.8} it follows from the structure
theory of modules over a Dedekind domain that Pic(,)(R) is exactly the n-
torsion subgroup of Pic(R) in the case that R is a Dedekind domain. Indeed, for
a Dedekind domain, every projective module M is of the form M = R™ @ P for
some rank 1 projective module P. In particular, if N € Pic(R) is n-torsion, then
if we write N" = R""1 @ P and we find

R=N®"= A"N"= A"(R"'@P) =P,

and so N" = R" which tells us that N € Pic(,)(R) as claimed.

2.6.2 Relating the two Brauer group via Hilbert 90 spaces

We may attempt to define a map Br**(X) — Br“*(X) as follows. For an Azu-
maya algebra A, we may consider A as a twisted form of the sheaf of Ox-
algebras M,,(Ox). We would like to say that this is represented by a class in
H'(X, PGL,) as would follow from the logic of Lemma 2.5.5 However, for this
to work, we would need to know that the sheaf .o/ uto, (M,,(Ox)) of automor-
phisms of matrix algebras is given by PGL,(Ox) — that is, by conjugation. We
knew that this was true in the case of fields by the Noether-Skolem theorem,
however in general this is an extra assumption. For the purposes of the present
conversation, we will make the following ad-hoc definitions:

Definition 2.6.10 (Hilbert 90 spaces). We say that a ringed site X is a Hilbert
90 space if the presheaf Pic(Ox) given by U — Pic(Ox(U)) is locally trivial (i.e.
has trivial sheafification).

We can refine this slightly as follows:
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Definition 2.6.11 (Hilbert 90(n) spaces). We say that a ringed site X is Hilbert
90(n) space if the presheaf Pic(,)(Ox) given by U — Pic(,)(Ox(U)) is locally
trivial (i.e. has trivial sheafification). We say that X is a Hilbert 90 space if it is a
Hilbert 90(n) space for alln € Z,.

Now, if X is a locally ringed space, for example — that is, a topological space
with a sheaf of rings Ox such that Ox is a local ring for every point x € X, then
it is also a Hilbert 90 space, since projective modules over a local ring are free.

This will be a particularly useful concept for understanding the extent to
which Noether-Skolem will apply for us, as the following Lemma illustrates:

Lemma2.6.12. Suppose Pic(R) = 0. Then the natural map PGL,(R) — Aut(M,(R))
is an isomorphism.

Proof. For the commutative ring R, the concept of rank of a projective module
defines a function Spec(R) — IN.

Morita theory tells us that since R” is a projective generator in the category
of R-modules, we have an equivalence of categories between the category of R-
modules and the category of Endg (R") = M,,(R)-modules, and this equivalence
takes R to R". Let ¢ € Aut(M,(R)). We see that if N is an R-module which is
projective of rank 7, then its image R” ®r N is a projective M,,(R)-module which,
viewed as an R-module via the R-algebra structure of M, (R), is a projective R-
module of rank rn.

Precomposition with ¢ gives an auto-equivalence on the category of M,,(R)-
modules, where an M, (R)-module P is taken to a new module with structure
given by T - p = ¢(T)p. As this is a categorical equivalence, it preserves cate-
gorical notions such as projectives and generators. Note that as every automor-
phism of M,,(R) preserves the R-algebra structure by definition, the R-module
structure of modules is left unchanged.

In particular, we obtain two different M, (R)-module structures on R", the
first being the standard one, and the second given by T - v = ¢(T)v. Corre-
spondingly, this second structure corresponds to an R-module N which is also
a projective generator. Suppose N has rank . Then it follows that R” has rank rn
as an R-module, which tells us that r = 1, or that N is a rank one projective mod-
ule. As Pic(R) = 0, it follows N = R which implies these two M,,(R)-module
structures determine isomorphic modules. Therefore we have an isomorphism
Y : R" — R" of R-modules such that

T-y(v) = ¥(To)
or in other words, ¢(T)(v) = ¢(Tv) or ¢(T) = YTy~ as desired.

There is actually a bit more one could say here:

Proposition 2.6.13. Lef R be a commutative ring. Then the natural map PGL,(R) —
Aut(M,(R)) is an isomorphism if and only Pic,)(R) = 0.
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Proof sketch. Looking more carefully at the proof, one can see that the two
M,,(R)-module structures on R” yield modules which are isomorphic as R-
modules (by construction). Hence, by the explicit Morita equivalence, if the lat-
ter corresopnds to N as an R-module, then we must have an isomorphism N" =
R". So, in fact, we find the stronger conclusion that PGL,(R) — Aut(M,(R)) is
an isomorphism as long as there are no rank 1 projective R-modules N such
that N" = R".

Conversely, if we have such an N, and we choose an isomorphism N" = R",
we find that we obtain two corresponding M, (R) module structures on R"
where via Morita theory, one corresponds to R and the other to N as R-modules.
Hence these are different M,,(R)-modules. However the isomorphism of R-
modules N" = R" induces an isomorphism of their endomorphism groups,
which then gives an automorphism of M, (R) which is cannot be given by
conjugation. O

Proposition 2.6.14. Let X be a Hilbert 90(n) space. Then we have an isomorphism of
sheaves of groups:
PGL,(Ox) — Aut(M,(Ox))

The following Lemma now follows immediately from descent:

Lemma 2.6.15. Suppose X is a Hilbert 90(n) space. Then we have a bijection between
isomorphism classes of Azumaya algebras of rank n and the pointed set H' (X, PGLy).

In this case, we obtain a map Br**(X) — Br“"(X) via the boundary map
6 : HY (X, PGL,) — H*(X,G,,).
Lemma2.6.16. Let A, B be Azumaya algebras over X. Then §(ARB) = 6(A)+6(B).

It follows that the map is injective — if A has trivial class in H?(X,G,,), then
it must be in the image of H!(X, GL,). But by our description of the sequence,
it follows that we then would have A = &nd(V) for some locally free sheaf V
of rank n. Hence [A] = 0 in Br'*(X).

Proposition 2.6.17. Suppose X is a Hilbert 90(n) space for all n. Then we have an
injective group homomorphism

Br?(X) — Br(X).

2.7 Spectral sequences: from Cech to Artin-Leray

There are many different spectral sequences we find in life, but in many ways,
there are only a few from which all others are derived. Or perhaps there is only
one. In any case, one candidate for such a “mother” spectral sequence is the
Cech sequence. Let X be a site and .# a sheaf of Abelian groups on .# (or a
sheaf in some appropriate Abelian category). This spectral sequence works as
follows:
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2.7.1 Cech combinatorics and simplicial objects

Given a covering {U; — U}ics in X, we can consider, for every ordered tuple of
indices i, = (io, i1,...,ip) the iterated fiber product

Ui, = Uj, xu U;, xu -+ xu U,
if we write |is| = p + 1 in the above situation, we can then set
u =[] u..
lisl=p+1

This collection comes with a natural collection of maps. For example, if

filpl={01,...p"} = {0,1,...p} = [p]

is any map which preserves the partial order <, we see that for any tuple i, with
lie] = p+1,if welet f(i.) = (if), ifq), - --if()), then there is a corresponding
map on the fiber products in the other direction

Ui, — Uy,

(given by the universal property of fiber products). Proceeding this way for
each index i, with |i,| = p + 1, we may put these together to obtain a map:

ffou, - Uy.

In other words, if A is the category of finite, linearly ordered sets and order
preserving maps (which can be taken, up to equivalence, to consist exactly of
the objects [p] and maps between them), then the rule

] — Uy
extends to a contravariant functor
Ue: A — XP.
Composing this with the any presheaf ¢, we obtain a covariant functor
Y(U.):A— Ab

Definition 2.7.1. Let € be a category. A simplicial object in ¥ is a contravariant
functor £ : A — €. We write =, for Z([n]).

Definition 2.7.2. A cosimplicial object in ¢ is a covariant functor Z: A — .
We write =, for Z([n]) and we letd; : =,_1 — =, be defined as

dyi = (0" : [n—1] — [n]),
where 6" is the unique order preserving map which misses only the index

ie[n]. Letd, = > o(—=1)dy;.
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Definition 2.7.3. Let =: A — C be a cosimplicial object where C is an Abelian
category. We define F?(Z) to be the homology of the sequence

dﬂ —_ dp+1 —_
—p—1 =p =p+1-

Let us come back to the situation where .% is a sheaf of Abelian groups on a
site X, and given our covering U = {U; — U} and corresponding cosimplicial
object U,. We can define, for each g € IN, a presheaf 7#1(.%) on X given by
HN(F)(V) = HI(V,.#). Composing with the cosimplicial object U, gives a
simplicial object which we can concretely describe as:

HAF)(UL): A— Ab
[p] = HI(Uy, #) = [ ] H'(Us,, 7).
lis|=p
We finally can describe the Cech spectral sequence. Following convention we
will write HP (U, 57(F)) for AP (s9(F)(U,) below:

Proposition 2.7.4. Let X bea siteand .% a sheaf of Abelian groups. Let U = {U; — U}
be a covering. Then there is a convergent spectral sequence of cohomological type:

WP (U, #(F)) = HP (U, 7).
Proof. See [?, Tag 030W]. m]

2.7.2 From Cech covers to Galois covers

Suppose {X — X} is a G-Galois covering of schemes. For a presheaf ¢ on X,

%(X) carries a G-action. Let X, be the cosimplicial scheme associated to this
cover.

Proposition 2.7.5 (Artin-Leray Spectral Sequence). We have a natural isomor-
phism between Cech and Galois cohomology groups:

H(¢9(X.)) = HP(G,%(X)).

In particular, if we are given a Grothendieck topology within which {X — X} is a
covering, then we obtain a convergent spectral sequence

HP(G,HY(X, F)) = H'T(X, F).
Proof. TBD. m]
Lemma 2.7.6. Let X — X be a G-Galois covermg of S-schemes for a finite group G.
Then we have an isomorphism X x x X = XC.

Proof. Considering G as the S-group scheme SC (a finite number of copies of S),
we have a map

GxX—XxX
given by (g x x) — (x, gx) ]


https://stacks.math.columbia.edu/tag/03OW

Chapter 3

Topics

3.1 The Brauer group and Picard group

In this section, we'll use the Artin-Leray spectral sequence (Proposition [2.7.5)
to understand the behavior of the Picard group/functor/moduli problem. Let’s
start with the moduli problem itself. We consider the following:

Goal: parametrize line bundles on a smooth projective variety X.

Now, what should this goal exactly mean to us? At the basic level, given X
a smooth projective variety over a field k, we’d like to construct a scheme Picx
whose k-points correspond to isomorphism classes of invertible sheaves on X.
Unfortunately, it turns out that this is generally impossible, even for X a curve!

Before going further, it should be mentioned that a very excellent reference
for understanding the Picard functor and its representability is the survey of
Kleinman in [?].

Definition 3.1.1. Let X be a proper variety over a field k.

3.2 (mostly April 1) The Brauer group of a local ring

1. purity — Brauer group of punctured spectra in dimension > 1

3.3 The Brauer group of a complete discretely val-
ued field (tame case)

1. Hensel’s lemma and the correspondence between finite étale algebras
(unramified extensions) over a Henselian dvr and its residue field

2. Existence of unramified splitting fields in the perfect case (and mention
Kato cohomology / differential forms / crystalline ideas for the bad char-
acteristic case)
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3. The short exact ramification sequence

Theorem 3.3.1. Let R be a complete discretely valued field with finite residue field,
and let F be its field of fractions. Then we have a canonical isomorphism

Br(F) = Q/Z.

3.4 (April 8) Ramification, purity
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3.5 Severi-Brauer schemes

The story of what are now known as Severi-Brauer (or as Brauer-Severi)
schemes has as its origin the classification of genus 0 curves. As it is discussed
in Chatelet’s remarkable 1944 paper (see [?]), this problem had been considered
by a number of authors, including Max Noether [?], David Hilbert and Adolf
Hurwitz [?] in the late 1800, where it was shown that such a curve could always
be described as a plane conic, and in particular was described by the solutions
to a quadratic equation in three variables.

The question of considering when such curves had rational points was taken
up by Poincare in 1901 [?] and then systematically investigated by Helmut Hasse
[?]in 1935 where a close connection was made between such equations and the
arithmetic of quaternion algebras.

In [?], Frangois Chatelet introduced a vast generalization of these perspec-
tives by introducing similar connections between certain higher dimensional
varieties and general central simple algebras, which had been studied by
Richard Brauer and many others at the time. For this reason, he called these
varieties “variétés de Brauer” which we define below:

Definition 3.5.1. Let k be a field. We say that a k-variety X is a Severi-Brauer
variety if X; = ]PZ—1 for some .

In order to give another characterization of Severi-Brauer varieties, let’s
recall the definition of the Grassmannian scheme.

Definition 3.5.2. Let S be a scheme and % a rank n locally free sheaf of 0s-
modules. We define the Grassmannian variety Gr(m, %) as representing the
following functor. For an S-scheme T, we define:

Gr(m, #)(T) = {rank m subsheaves & < %1 | #7/& is locally free}.

Definition 3.5.3. Let S be a scheme and A/S a sheaf of Azumaya algebras over
S of degree n. We define X #, the Severi-Brauer scheme associated to A as the
S-scheme representing the following subfunctor of the Grassmannian.

Xa(T) ={I < Gr(n, A)(T) | 1 is a sheaf of right ideals in At}

3.6 Formal smoothness, etaleness

3.7 The Albert-Brauer-Hasse-Noether theorem
Theorem 3.7.1 (Alber-Brauer-Hasse-Noether).

3.8 Gerbes and Azumaya algebras

We recall the notion of stacks from Section[2.2.2]
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Definition 3.8.1. Let C be a site and .7 a stack on C. We say that .7 is a gerbe if

1. for every U € C, there exists a cover {U; — U} in C such that . (U;) # &
(that is, the category has at least one object), and,

2. forevery U € C, and s, t € .(U), there exists a cover {U; — U} in C such
that s|; = t|; for all i.

Definition 3.8.2. Let C be a site and y1 a sheaf of Abelian groups on C. A p-gerbe
is a gerbe . on C together with, for every U € C and s € . (U), together with a
coherent system of isomorphisms a5 : u(U) > Aut () (s). More precisely, we

ask that for every morphism f : V — U in C we have a commutative diagram
(writing s|V for .#(f)(s)),

s

u(l) Aut ) (s)

l ly(f)(S)

V) - Autsv) (slv),

and for every morphism A : t — u in .#(U), we have a commutative diagram

Auty(u) (i‘)

at

=

! Auty(u) (u),

p()

where inn, denotes the automorphism induced by conjugation.

Proposition 3.8.3 (Giraud). Let C be a site and u a sheaf of Abelian groups. Then
we have a bijection of equivalence classes of i-gerbes on C and the cohomology group
H(C, ).

3.8.1 Gerbes from Azumaya algebras

In this section we will describe how to pass from an Azumaya algebra to a
gerbe.

Definition 3.8.4. Suppose X is a ringed site (as in Definition 2.6.1T) and A
is a sheaf of Azumaya algebras over X. We define a G,-gerbe Spl, over X
as follows. For U € X, the objects of Spl,(U) are pairs (V, 1) consisting of
a locally free sheaf V together with an isomorphism of sheaves of algebras
¥ : A — &nd(V). A morphism (V,¢) — (V’, ') is the data of an isomorphism
of sheaves f : V — V' such that if inny is the induced map &nd(V) — &nd(V’)

51




given by T — fTf~!, then we have a commutative diagram:

" &End(V)
A jirmf
v T end(V).

Lemma 3.8.5. Suppose X is a ringed site and A is an Azumaya algebra of rank n.
Then Spl , is a G,-gerbe over X.

Proof. We note that scalar multiplication gives for every (V, 1) € Spl,(U), anat-
ural map G,,(U) — Aut(V) such that the corresponding inner automorphism
is trivial. Hence this induces a map G,,(U) — Aut(V,¢). We need only check
that this is an isomorphism. But this follows from the fact thatany f : V — V
which gives an automorphism must be in the center of &nd(V), and such an
endomorphism is a scalar since it is a scalar when restricted to any open set
V < U on which V is trivial (this is from the fact that Z(M,(R)) = R for any
commutative ring R). m]
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3.9 Projective representations

This section consists of a more conversational summary of what I did in lecture
on Monday, April 28.

3.9.1 Spin bundles
e first describe the idea of adding structure to a bundle via a representation

® so, given a vector bundle V /X, we may ask if we can endow V with the
structure of a bilinear form?

e cohomology sequence here is the nonabelian one O, — GL, — GL,/O,
not a great interpretation or description here.

o but suppose we can do this. we can then ask about whether or not it has a
well defined “volume form.” or more precisely, can we lift to SO,? Here
the quotient is in H(+1) and so we actually get a double cover and ask
how many sheets it has.

e if we can do this, we can actually ask if the bundle is spinnable. For this,
it turns out that the group SO, has a double cover Spin, (its the electron
double spin thing) and we can do this if a brauer class vanishes.

o classical fact — this Brauer class is described via the clifford algebra of the
quadratic form in the case of an even-dimensional form

3.9.2 central extensions vs gerbes

Given a group G over a field (or a sheaf of groups over a site X), we may ask
for representations of G. These are, by definition, homomorphisms of the form
G — GL,,. But for various purposes, we are often more interested in projective
representations G — PGL,. Unfortunately, there are generally much better tools
for working with regular representations compared to projective ones — you can
add them and multiply them, consider a K-group of them, etc.

central extensions

The conventional way of thinking about these is via central extensions. That is,
given a projective rep p : G — PGL, we can consider lifting along GL, — PGL,
and considering the group (NEP = {(g,T) € G x GL, | p(g) = T}. This maps
to G and is actually a central extension. Our projective representation of G
now corresponds to a representation of ép. More or less conversely, if the
corresonding representation p : ép — GL, is irreducible, it will follow that

Z(ép) maps to Z(GL,) = G, and consequently we will get back a projective
rep of G from this.
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We can do this for all projective reps at once by constructing (when we
can) a universal central extension G — G which admits a map to each other
universally G- ép and in particular a projective representation of G gives an
ordinary representation of G. And as before, when the latter is irreducible we
can go backwards.

In the prior section, we saw that lifting G bundles to G-bundles involves an
H? obstruction, and this can often by lined up with a Brauer group computation.

projective reprentations and gerbes

The analogy with the prior section is not super tight, but let’s try anyways.
We can also think about this somewhat stack-theoretically which allows us to
consider it in families. So, suppose we have a site X (for example, corresponding
to a complex analytic space with the standard complex topology). We suppose
we have a sheaf of groups G on X and we are interested in a “family of projective
representations.” How could this work? We could imagine on a covering U; of
X, considering representations p; : G|y, — GL, = GL(V;) with the p; having
some compatibility. How could this work? As we are working in families, we
don’t want the V; to have to be constant, so they should at least locally look
something like a vector bundle with identifications ¢;; : Vi|;; — Vjl;;. On the
other hand, we really just want things to be well defined when passing to
p; : Glu, — PGL,, so we don’t need that ¢;x = ¢;x¢;; on the nose, but rather just
q_bi,k =¢ j,kai, j when considering representatitives in PGL(V;).In other words, we

find that the ¢, ; give gluing data for an Azumaya algebra of degree 1, and our
projective representation has its image in invertible elements of an Azumaya
algebra instead of GL(V) for some V.

But as it stands, this is a little less satisfying. We would like to regard our
projective repesentations as honest representations in a somewhat different
context. Here what we can do, is instead of changing the ring, we can change
the space.

Namely, we can fiber this construction to the stack Spl 4 if A is the Azumaya
algebra described above. We then find that the V;’s now glue in the site of Spl ;.
More precisely, we can define a vector bundle V on Spl, by describing, for each
object (U, 1) of Spl 4(U), which we can think of as an object of the site s(Spl),
we can consider the corresponding cover obtained by pulling back over the
cover {U; — X} —that s, the cover {(U; xx U, Y|u;xxu) — (U, 1)} in s(Spl,).

3.10 Brauer groups and Tate-Shafarevich groups

Here we take an interlude to consider the following problem: given a variety
over the rational numbers or some other number field, when can we conclude
that the variety has a rational point? In this generality, the problem is intractable,
but what we would very much like is to be able to understand classes of varieties
where such a determination could be made algorithmically.
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Let’s suppose we have some variety X over a number field k. We have previ-
ously seen, with the Brauer-Manin obstruction, the idea that one can determine
in an algorithmic fashion whether or not X(k,) is nonempty where v is some
valuation on k and k, the corresponding completion. As we had previously
considered, one can then consider the Brauer group of X, at least in cases where
it is computationally accessible, in order to find potential new obstruction for
rational points, assuming that X(k,) # & for all v.

Let us consider specifically the case where X is a smooth projective algebraic
curve. In this case, we may ask how the problem of finding out whether or not
a rational point exists relates to the genus of the curve. In the case that the
curve is genus 0, we find that X; is isomorphic to the projective line IP%, and

consequently is the Severi-Brauer variety associated to a quaternion algebra Q
(see Section[3.5). In this case, we find that X(k) # ¢ if and only if Q = My (k). As
we have seen from Theorem [3.7.1} Q = M, (k) if and only if Qx, = My(k,) for all
v, or in other words, X(k) # ¢ if and only if X(k,) # J for all v. In particular, if
X is genus 0, the Hasse principle holds, and we are able to determine whether
or not X has a rational point by a deterministic algorithm, as the existence of
local points is deterministically algorithmic.

On the other hand, the case when X has genus at least 2 (i.e. when X is
general type or “hyperbolic”), has a very different kind of answer. By a result
of Faltings, X(k) is finite, and there are, in principle, effective bounds one may
give for the number of points on such a curve. On the other hand, at present
there is no known method for finding the points, or showing that the set of
points is nonempty (although there are various methods which are effective for
particular classes of curves).

This leaves us to the interesting case of genus 1, which is a kind of “sweet
spot” computationally. In this case, we have been close for some time to finding
effective answers, although a complete solution is still out of reach. Let us now
describe the situation a bit.

Let X be a genus 1 curve over a field k. One then defines the Jacobian of X,
written [x to be the identity component of the Picard scheme for X. That is:

Definition 3.10.1. Let X be an algebraic curve over a field k. We define the
Picard scheme of X, denoted Picx to be the sheafification of the presheaf on the
étale site kg given by

U — Pic(X x U).

Definition 3.10.2. For d € Z, we let Pic’fg denote the subsheaf of Picxy which
associates to a k-scheme U the subset of Pic(X x U) consisting of isomorphism
classes of line bundles .Z over X x U such that for every u € U, the restruction
Z|xxu is a degree 0 line bundle on the curve X x u (which is a curve over the
residue field of the point u). We set Jx = Picg( and call [x the Jacobian of X.

Proposition 3.10.3. Let X be a genus 1 curve. Then there is a canonical isomorphism
X — Picy, which is described on L-points (for a field extension L/k) as p — Ox, (p)
forpe X(L).
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Proposition 3.10.4. If X isaa genus 1 curve, then X is a principle homogeneous space
(torsor) for the curve Jx regarded as a group scheme, and [x is the unique elliptic curve
(up to isomorphism) which admits X as a principle homogeneous space. Conversely,
if & is any elliptic curve over k, then principal homogeneous spaces for & are genus 1
curves.

o def of sha, conjectural finiteness

e brauer group vs weil-chatelet group

e regular model of the elliptic curve and brauer group of the model (Chebatarov)
e Brauer group = tate shafarevich group

e cassels-tate pairing (nondegenerate modulo divisible subgroup of sha)

o l-function of elliptic curve order of vanishing gives (conjecturally) the
rank and the leading coefficient carries the information of sha

e sha is conjecturally finite by the above

o from Tanayama-Shimura, one now known finiteness of sha when analytic
rank is at most 1

pairing as follows:

1. givena,a’ in sha, consider X as the homogeneus space for a. Then a’ gives
a brauer class. This class is adically-locally constant, and the sum of the
invariants of those constant classes is the value of the pairing.
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Appendix A

Practice

A1 semilinear spaces (the descent data category)
with exercises

Exercise 1. If E/F is a G-Galois extension of fields, show that the natural map
(E,G,1) — Endr(E)
x—[y—axy], xyek
us — [y—o(y)], oceGyeE
gives an isomorphism of algebras.

Definition A.1.1. Recall that if E/F is a G-Galois extension, an E/F-semilinear
vector space is an E-vector space V together with an action of G on V such that
forevery x € E,v € V, we have

o(xv) = o(x)a(v).

A homomorphism of E/F semilinear vector spaces ¢ : V — W consists
of an E-linear map ¢ which commutes with the G-action in the sense that

$(0) = a(¢o).

Exercise 2. If V is an F-vector space then E ®r V is naturally an E/F semilinear
vector space, where the action of G is via the first factor.

Exercise 3. Show that we have an equivalence of categories between (E, G, 1)-
modules and E/F-semilinear vector spaces.

Recall the following result which we claimed in the last lecture:

Proposition A.1.2 (Morita). Let R be a ring and P a right R-progenerator (i.e. finitely
generated, projective generator in the category of right R-modules). Let S = Endgr(P).
Then the functor from R-modules to S-modules given by

N—P®rN
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is an equivalence of categories. Further, if P* = Homg(P,R) then P* isan R — S
bimodule, and
M — P* ®@s M

gives the (homotopy) inverse equivalence.

Exercise 4. Show that the functor from F-vector spaces to E/F-semilinear vector
spaces given by
V- VE =E ®1: \%

is an equivalence of categories.

Now, if we are interested in talking about algebraic objects (such as central
simple algebras), we need more than just vector spaces and linear maps, but
we also need the concept of the tensor product (for multiplicative structures).

Definition A.1.3. Suppose V, W are E/F semilinear vector spaces. Then V @z W
is also a semilinear vector space with respect to the action:

o(v@w) =o(v)®a(w).

Exercise 5. Show that the above definition gives a well defined E/F semilinear
space and that this commutes with the functor given above.

That is, show that if V, W are F-vector spaces, then we have a natural iso-
morphism of E/F semilinear vector spaces

Ve ®e Wg = (V& W)E.
More formally (if you like), this means you are showing that the two functors
(VW) = (VE®e We)  (Vw) — (V&F W)

from Vec/F x Vec/F to the category of E/F semilinear vector spaces are naturally
isomorphic.

From this point of view it makes sense to talk about E/F semilinear algebras.

Definition A.1.4. An E/F semilinear algebra is an E/F semilinear vector space
A, together with an E/F-semilinear map

m:AQcA — A

and an E/F-semilinear map
1:E—-A

which gives A the structure of an algebra (where ((1) = 1 is the multiplicative
identity of A).

Exercise 6. Show that an E/F semilinear algebra is just an E-algebra A with a
semilinear action of G on A as a vector space such that a(ab) = o(a)o(b) (ie.
such that G acts via ring isomorphisms).
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Exercise 7. Show that we have an equivalence of categories between F-algebras
and E/F-semilinear algebras given by A — E ®r A.

Exercise 8. It follows from the above exercise that if welet F = Rand E = C,
then we have an equivalence between IR-algebras and C-algebras with a notion
of conjugation (action by Gal(C/R)). In particular, if we consider the R-algebras
H and M;(R), we see that

CR®rH = MQ(C) = C®R Mz(lR)

and so as C/RR semilinear algebras, both of these algebras are given as M;(C)
with two different notions of conjugation. What are these notions of conjuga-
tion?

A.2 twisted forms (the gluing problem) with exer-
cises

Throughout the section, let us fix E/F a G-Galois extension.

Definition A.2.1. Let A be an F-algebra. We say that an F-algebra B is a(n
E/F-)twisted form of A if there is an isomorphism of E-algebras, Ar = Bg.

Note that we are not assuming here that we have an isomoprhism of E/F
semilinear algebras (which would imply they were isomorphic over F), but just
as E-algebras.

As we saw in the previous section, we can recover the structure of B from Bg
by specifying a semilinear action. As we are able to identify A and Bg, our quest
to understanding the possible B’s we may have then reduces to understanding
all possible semilinear actions of G on Ag.

Definition A.2.2. Suppose V is a vector space with an action of G. We define
an action of G on Aut(V) by (d¢)(v) = o(p(c71(v)).

Exercise 9. Show that in the case V = E", with component-wise action, the
action of the Galois group G = Gal(E/F) on Aut(V) = GL,(E) is given by the
standard action on the matrix entries.

Exercise 10. Suppose ¢, : G — Aut(Ag) are two different semilinear actions
of G on Ag. That is, for 0 € G, we have d(a) = ¢(0)(a) and o(a) = ¢Y(0)(a)
define semilinear actions (note here that ¢ and ¢ need not have values in
E-automorphisms, but in general just F-linear automorphisms).

Show that ¢(0) = a(0)y(o) for amap a : G — Aut(Ag) and « is a crossed
homomorphism (where the action of G on Aut(Ag) here is given by the previous
excercise via ).

Exercise 11. Show that the above correspondence gives, after fixing an algebra
A/F abijection between semilinear actions on Ag and crossed homomorphisms
G — Autp (AE)
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From this we see so far that for B/F a twisted form of A, given an isomor-
phism ¢ : Bf — Ag, we obtain a new semilinear action on A which corresponds
to the algebra B/F via the equivalence of categories previously described. This
semilinear action, in turn gives rise to crossed homomorphism G — Aut(Ag).

It therefore is natural to ask: in what way does this semilinear action depend
on the isomorphism ¢?
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