Lecture 5: transcendence and Pell

Friday, February 10, 2017 2:32 PM

field arithmetic Page 2

god: would to show
$$\{2s_{1,3}, \ldots, s_{n}\}$$
 is a primerial
consider all pi's. at least one involues s_{1} (K_{2} ,
else, s_{1} at s_{2} our s_{1}, \ldots, s_{n} $\Rightarrow L(s_{1}, \ldots, s_{n})$) alg.
so while p_{1} involues s_{1} $L = le(s_{1}, \ldots, s_{n})$
this $\{2s_{1}, s_{1}, \ldots, s_{n}\}$ to have
 $p_{1}(s_{1}) = 0$
 $k_{1}(s_{1}) = s_{1}(s_{1}) = aut$
 $k_{1}(s_{1}) = s_{1}(s_{1}) = aut$
 $(l_{1}(s_{1})) = l_{1}(s_{1}) = s_{1}(s_{1}) = aut$
 $(s_{1}) = l_{1}(s_{1}) = s_{1}(s_{1}) = s_{1}(s_{1}) = aut$
 $(s_{1}) = l_{1}(s_{1}) = s_{1}(s_{1}) = s_{1}(s_$

The Frohenius:
If
$$F$$
 is a field of char p , then the map
 $froh: F \longrightarrow F$
 $\lambda \longrightarrow \lambda^{p}$ is a ring homomorphism.
 $(\lambda + \mu)^{p} = \lambda^{p} + \mu^{p}$
we can consider the imag of this map : $F^{p} \simeq F$
 $F/F^{p} \simeq F$

Note: tr(arg) = tr(a) + tr(B) N(a) = N(a) N(b)
why? Marg = Mat Mp Mag = MaMg
In the case of a Galois extension
$$\overrightarrow{IG}$$
, if all
then tr(a) = $\overrightarrow{S} \sigma(a)$ N(a) = $\overrightarrow{IT} \sigma(a)$
rect
moneouvini if $S_d(a) = \overrightarrow{S}_1 \ \overrightarrow{TT} \sigma_{ij}(a)$
where $\{\sigma_{11}, \dots, \sigma_n\}$ for
then
 $\chi_{a}(t) = t^n - s_i(a)t^{n-1} + s_2(a)t^{n-2} - \dots + s_n(a)$
where $(\sigma_{11}, \dots, \sigma_n) = t^n$
then will check by head.
by head $f(a)$
then will check by head.
in genesic, consider that earlies in My (i, so coulds
at χ_{a}) are part from in calls of $\alpha \in E$ (as and
 χ_{a} field extension $E(t_{11}, \dots, t_{n})$

NE/F

F(t_1, -, t_N) on
$$\overline{F}$$

F(t_1, -, t_N) on \overline{F}
it suffices to show that formula holds for α
why?. sine α generates $E(t_1, -, t_N)/F(t_1, -, t_N)$
if not, α is a subject. \Rightarrow sile 1/2 . $f(t_1)$
 $= \alpha$ is an ext. f term $L(t_1)$
 \Rightarrow so do all mays of speechyse t_1 but
there give all of \overline{E} α . Ω

Gen you desure solus?
Jived,
againstic
Gensider
$$F(\omega) = F[t]$$

 $\chi^2 = a$
 $\chi^2 = a$
 $\chi^2 = a$
 $\chi^2 = a$
 $\chi^2 = ay^2$
i.e. Pell: $N(x) = b$.
 $N(x+\alpha y) = (x+\alpha y)(x-\alpha y)$
 $= \chi^2 - ay^2$
i.e. $Pell: N(x) = b$.
 $N(x) = b$.
 $N(x) = b$.
 $N(x) = N(x) = b$.
 $N(x) = b$.

.

Harmless to go to cyclic extensions
Thun (Hillbert's theorem 90) if
$$F$$
 ica=
 Thun (Hillbert's theorem 90) if F ica=
 then useE has $N(n)=1$
 iff $u = \sigma(v)/v$ for some $v \in E^x$.
 $F^x \longrightarrow \{u \in E \mid N(u)=1\}$
 $v \longrightarrow \sigma(v)/v$
 $v \mapsto \sigma(v)/v$
 $v \mapsto \sigma(v)/v$
 $v \mapsto \sigma(v)/v$
 $r \in [v \in E \mid N(u)=1]$
 $v \mapsto \sigma(v)/v = [\sigma(v)/v)(\sigma(v)/v)$
 kindli
 $v \mapsto \sigma(v)/v = [\sigma(v)/v)(\sigma(v)/v)$
 kindli
 $v \mapsto \sigma(v)/v = [\sigma(v)/v)(\sigma(v)/v)$
 kindli
 $v \mapsto \sigma(v)/v = [\sigma(v)/v)(\sigma(v)/v)$
 $F^x \cong \{u \in E \mid N(u)=1\}$
 $T = [f + f(u)/v] + f(v = n = p = p)$
 $F^x \cong \{u \in E \mid N(u)=1\}$
 $T = [f + f(u)/v] + f(v = n = p)$
 $v \mapsto \sigma(v)/v$
 $\sigma(v) \mapsto \sigma(v)/v$
 $\sigma(v) \mapsto \sigma(v)/v$
 $\sigma(v) \mapsto \sigma(v)/v$

induction i as done xea nomes
N(n)=1
So: Let's describe the crossed homemorphisms.
Why not make E arth? Xed homs:
I G frit. G JEX
Then if i G JEX is a crossed hom, then I we EX
s.t.
$$\psi(G) = \sigma(u)/u$$

When are crossed homemorphism about, anyways?
Descent: E how to compare Vech spenes
G ave E & F?
F
green a vech spece V/F ~ ogt vispee V@FE/E
observation: V@FE has an added homesi action of G!