Applications of Graph Theory

Juan B. Gutierrez, UGA

January 21, 2016

Juan B. Gutierrez, UGA Applications of Graph Theory

< □ >

⊡ ► < ≣ ►

₹

< ∃→

 $\mathcal{O}QQ$

A **graph** can have different types of paths (remember, mathematicians need to be very precise):

- ► Walk: Move between vertices without restriction.
- **Trail**: Each edge must occur at most once.
- Path: Each vertex must occur at most once.
- Cycle: Closed path.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

E

Several solutions have been found to find the shortest path in a graph G with m edges and n vertices:

Juan B. Gutierrez, UGA Applications of Graph Theory

 ${\color{red}{\leftarrow}} \square {\color{red}{\leftarrow}} {\color{red}{\leftarrow}}$

<□> < ■> < ■> < ■>

₹

Several solutions have been found to find the shortest path in a graph G with m edges and n vertices:

Bellman-Ford (1958): O(mn) from i to j. O(mn²) from i to every j. O(mn³) from every i to every j.

< 🗆 🕨

@▶ ◀ 돈 ▶ ◀ 돈 ▶

5900

æ

Several solutions have been found to find the shortest path in a graph G with m edges and n vertices:

- Bellman-Ford (1958): O(mn) from i to j. O(mn²) from i to every j. O(mn³) from every i to every j.
- Dijkstra (1959): O(n²) from i to every j. O(n³) from every i to every j. O(m log n) if an inverted heap is used.

□ ► < E ► < E ►</p>

æ

Several solutions have been found to find the shortest path in a graph G with m edges and n vertices:

- Bellman-Ford (1958): O(mn) from i to j. O(mn²) from i to every j. O(mn³) from every i to every j.
- Dijkstra (1959): O(n²) from i to every j. O(n³) from every i to every j. O(m log n) if an inverted heap is used.
- **Floyd-Warshall** (1962): $O(n^3)$ to find from every *i* to every *j*.

□ ► < E ► < E ►</p>

æ

Several solutions have been found to find the shortest path in a graph G with m edges and n vertices:

- Bellman-Ford (1958): O(mn) from i to j. O(mn²) from i to every j. O(mn³) from every i to every j.
- Dijkstra (1959): O(n²) from i to every j. O(n³) from every i to every j. O(m log n) if an inverted heap is used.
- **Floyd-Warshall** (1962): $O(n^3)$ to find from every *i* to every *j*.
- ► Gomory-Hu (1961!!!): O(n³) to find from every i to every j plus a tag matrix (very useful as we shall see).

□ ► < E ► < E ►</p>

Ξ

Floyd-Warshall Algorithm

$$c_{ik} = \left\{ egin{array}{c} c_{ij} + c_{jk}, \ {
m if} \ c_{ik} > c_{ij} + c_{jk} \ c_{ik}, \ {
m otherwise} \end{array}
ight.$$

This algorithm works by Bellman's optimality principle (or minimality principle): If P = 1, 2, ..., i, j is a shortest path from 1 to j, then $P : 1 \rightarrow i$ is a shortest path as well.

Juan B. Gutierrez, UGA Applications of Graph Theory

< □ ▶

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

æ

Route Calculation

	1	2	3	4	5	6	7	
1	0	11	30	Inf	Inf	Inf	Inf	
2	11	0	Inf	12	2	Inf	Inf	
3	30	Inf	0	19	Inf	4	Inf	
4	Inf	12	19	0	11	9	Inf	
5	Inf	2	Inf	11	0	Inf	Inf	
6	Inf	Inf	4	9	Inf	0	Inf	
7	Inf	Inf	Inf	20	1	1	0	

	1	2	3	4	5	6	7		1	2	3	4	5	6	7
1	0	11	30	23	13	32	Inf	1	1	2	3	2	2	2	7
2	11	0	25	12	2	21	Inf	2	1	2	4	4	5	4	7
3	30	31	0	13	30	4	Inf	3	1	6	3	6	6	6	7
4	23	12	13	0	11	9	Inf	4	2	2	6	4	5	6	7
5	13	2	24	11	0	20	Inf	5	2	2	4	4	5	4	7
6	32	21	4	9	20	0	Inf	6	4	4	3	4	4	6	7
7	14	3	5	10	1	1	0	7	5	5	6	6	5	6	7

・ロト・日本・日本・日本・日本・日本

Juan B. Gutierrez, UGA

Applications of Graph Theory