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Shortest Path Solutions

A graph can have different types of paths (remember,
mathematicians need to be very precise):

» Walk: Move between vertices without restriction.
» Trail: Each edge must occur at most once.
» Path: Each vertex must occur at most once.

» Cycle: Closed path.
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Shortest Path Solutions

Several solutions have been found to find the shortest path in a
graph G with m edges and n vertices:
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Shortest Path Solutions

Several solutions have been found to find the shortest path in a
graph G with m edges and n vertices:

>

Bellman-Ford (1958): O(mn) from i to j. O(mn?) from i to
every j. O(mn3) from every i to every j.

Dijkstra (1959): O(n?) from i to every j. O(n>) from every i
to every j. O(mlogn) if an inverted heap is used.
Floyd-Warshall (1962): O(n®) to find from every i to every ;.

Gomory-Hu (1961!!1): O(n?) to find from every i to every j
plus a tag matrix (very useful as we shall see).
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Floyd-Warshall Algorithm

o = Cij + Cjk, if c; > Cij + Cjk
’ Cik, otherwise

]

L=

This algorithm works by Bellman’s optimality principle (or
minimality principle): If P =1,2,...,i,j is a shortest path from 1
to j, then P : 1 — | is a shortest path as well.
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Route Calculation
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1 11 a0 23 13 a2 Inf 1
2 11 0 25 12 P 21 Inf 2
3 a0 31 o 13 30 4 Inf 3
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