Theorem (Fundamental theorem of equivalence velocities)
Let S be a set.
If wis an equivalence on S, delive

$$P_{n} = \{ La \}_{n} | a \in S \}$$
.
And if P is a partition, delive
 $N_{p} = \{ (a,b) \in S \times S | a,b \in p \text{ some per P} \}$.
There: Provids a partition whenever with an equival
and mp is an equival, where of P is a partition
and $P_{np} = P$ $\sim P_{n} = N$
i.e. If S is any set P_{n} \sim
 $\{ partitions of S \} \xrightarrow{P_{n}} \{ equivals on S \}$
 $p = N_{p}$
and there give notically inverse bijectors.

Aside:

$$S = \mathbb{Z} \qquad \sim = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a-b \text{ is even} \}$$

$$[b] = \{b \mid 0-b \text{ even} \} = \{aeven \neq s\}$$

$$[1] = \{b \mid 1-b \text{ even} \} = \{ab \neq s\}$$

$$[2] = [c] = [cR]$$

$$[1] = [c] = [cR]$$

$$[c] = [cR] = [cR]$$

$$= \{cR, R\}$$

$$P_{n} = \{cR, R\}$$

$$P = \{cen \neq s\} \qquad c = \{cR, R\}$$

$$P = \{cen \neq s\} \qquad c = \{cR, R\}$$

$$P = \{cen \neq s\} \qquad c = \{cR, R\}$$

$$P = \{cen \neq s\} \qquad c = [cR, R]$$

$$P = \{cen \neq s\} \qquad c = [cR, R]$$

$$P = \{cen \neq s\} \qquad c = [cR, R]$$

$$P = \{cen \neq s\} \qquad c = [cR, R]$$

$$P = \{cen \neq s\} \qquad c = [cR, R]$$

$$P = \{cen \neq s\} \qquad c = [cR, R]$$

$$P = \{cen \neq s\} \qquad c = [cR, R]$$

$$P = \{cen \neq s\} \qquad c = [cR, R]$$

$$P = \{cen \neq s\} \qquad c = [cR, R]$$

$$P = \{cen \neq s\} \qquad c = [cR, R]$$

$$P = \{cen \neq s\} \qquad c = [cR, R]$$

$$P = \{cen \neq s\} \qquad c = [cR, R]$$

$$P = \{cen \neq s\} \qquad c = [cR, R]$$

2) Suppose
$$x \in [a] \cap [b]$$
, we'll show $E^{i} = D^{i}$.
let's check $[a] \subset [b]$,
if $y \in [a]$ then any
but $x \in [a] \Rightarrow anx \stackrel{sym}{\Rightarrow} xna$
trans $i_{i} symmetry \Rightarrow xny \stackrel{sym}{\Rightarrow} ynx$
trans $i_{i} symmetry \Rightarrow xny \stackrel{sym}{\Rightarrow} ynx$
but $x nb$, $\Rightarrow ynb \Rightarrow y \in [b]$
 $a \in D$

$$q \sim p^{b}$$
, $b \sim p^{c}$, $w h \gamma R = a \sim p^{c}$?
if $q \sim p^{b} \Rightarrow \exists p t P = s.t. = a, b \in p$
 $b \sim p^{c} \Rightarrow \exists g \in P = s.t. = b, c \in g$
 $b \rightarrow p \in \Rightarrow \exists g \in P = s.t. = b, c \in g$
 $b \rightarrow p \in \Rightarrow f = g \Rightarrow p \cap g \neq p \Rightarrow p = g.$
 $\Rightarrow a, c \in p = g. \Rightarrow q \sim p^{c}.$

