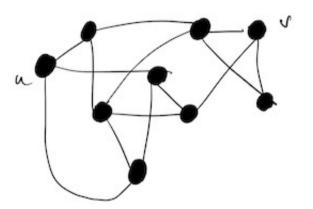
Graph Theory Practice Sheet for Midterm 2

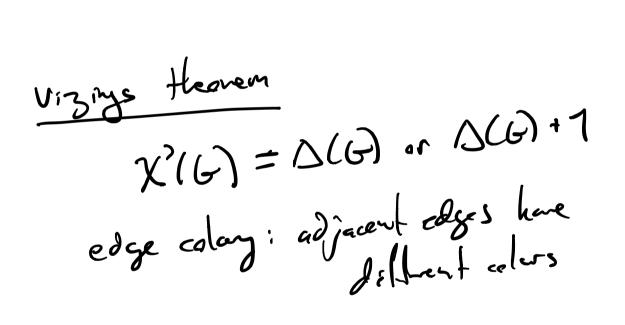
This sheet is not meant to be exhaustive, but rather as a supplement to the problems from the homework since the last exam.

- 1. This is a problem in the direction of Vizing's Theorem. Show that for a graph G, you can always color it using at most $2\Delta 1$ colors. As a hint, you should think about the simple vertex coloring algorithm and how it worked.
- 2. This problem is the direction of Brook's Theorem. Suppose that G is a graph, v is a cut vertex and G_1, G_2, \ldots, G_k are the components of G v. Show that if $\chi(G)$ is less than $\Delta(G)$ for each x, then we will also have $\operatorname{Ce}(G) = \chi$
- 3. Can you draw a graph with G = 4 and with the graph containing no triangles? If you can, do it. If not, say why not.
- 4. Draw a graph with $\kappa(G)=2, \lambda(G)=2$ and $\delta(G)=3$ (or show no such graph exists).
- 5. In the graph shown below, exhibit a minimum u v vertex cut and a minimal u v vertex cut which isn't minimum. How can you tell that your minimum vertex cut is actually minimum?



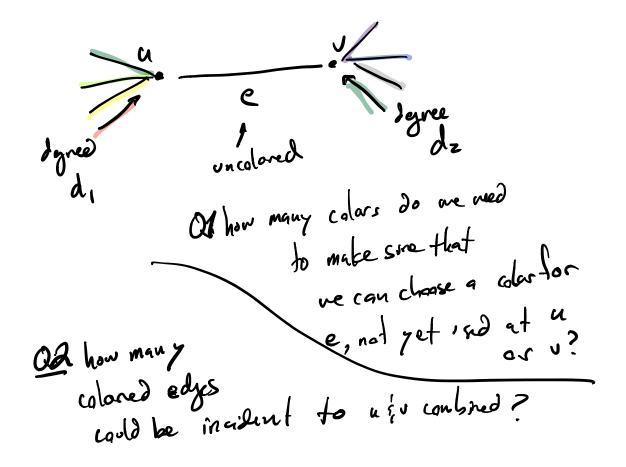
6. Find all cut vertices and blocks in the graph below:





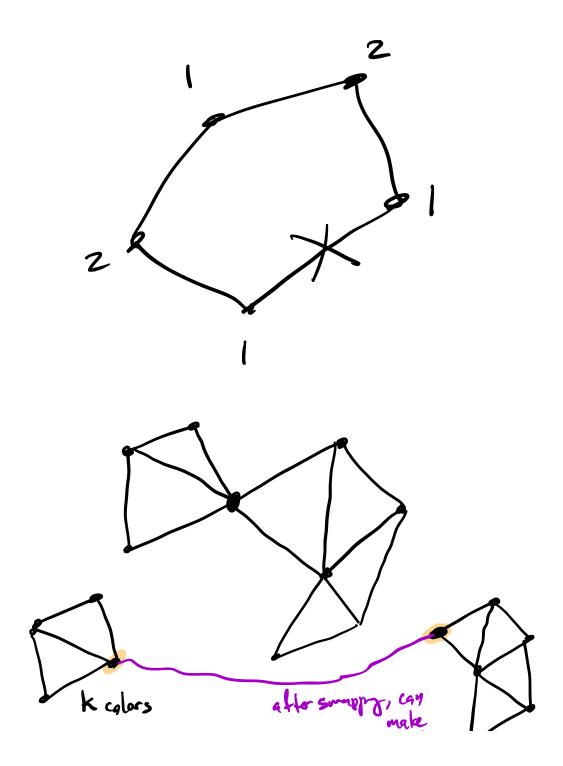
what's a black

 $\Delta(G) \leq \chi'(G)$ Problemi Show X'(G) 5 ZA-1

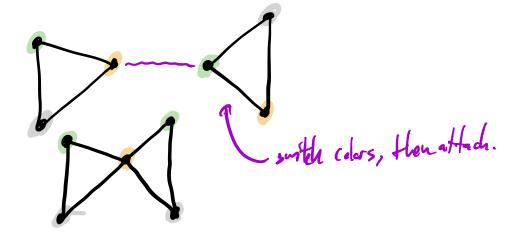


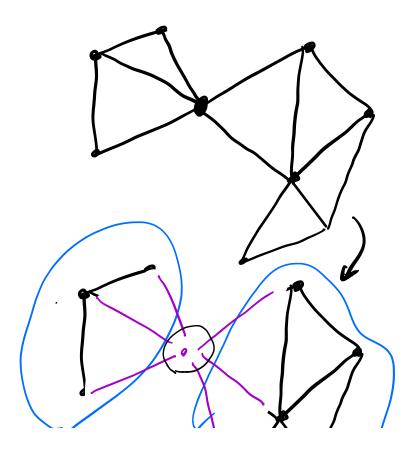
Why is it the that
$$\chi(G) \leq \Delta + 1 \geq$$

Proof by induction: 1
induct on #U(G)
o; (#U(G) = 1 $\Delta = 0$ con
color of 1
Gase cone.
if the for # U(G) < n
soppose #U(G) = n.
pick ve V(G), consider
G-V. know $\Delta(G-V) \leq$
 $\Delta(G)$
so by induction can color -1 $\Delta(G-V) + 1$
colors in G-V, so can dd color out
 $\Delta(G) + 1 \approx G - 0$. Now can find
Some color of those $\Delta(G) + 1$ induced
in ribers of V in G. use this to color
V, done.



altradiguée. k colors "k cale for ony mal?





∆(G) not just (10)+((need to related)

