Graph Theory Practice Sheet for Midterm 2

This sheet is not meant to be exhaustive, but rather as a supplement to the
problems from the homework since the last exam.

1. This is a problem in the direction of Vizing's Theorem. Show that for a graph G,
you can always color it using at most 2A — 1 colors. As a hint, you should think
about the simple vertex coloring algorithm and how it worked.

2. This problem is the direction of Brook's Theorem. Suppose that GG is a graph, v
is a cut vertex and G1, G, . . . , G, are the components of G — v. Show that if

X(GI) is less than A(G)‘ for each®, then we will also have $\chi(G) \leq

\Delta + 1. % X <

3. Canyou draw a graph wit%G) = 4 and with the graph containing no ~
triangles? If you can, do it. If not, say why not.

4. Draw a graph with kK(G) = 2, A(G) = 2 and §(G) = 3 (or show no such
graph exists).

5. Inthe graph shown below, exhibit a minimum « — v vertex cut and a minimal
u — v vertex cut which isn't minimum. How can you tell that your minimum
vertex cut is actually minimum?

6. Find all cut vertices and blocks in the graph below:
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