Hitrank def
A graph causists of two cets

$$V = vertres^{n}$$
 begetly with an $(ncidene map)^{n}$
 $E = edges^{n}$ begetly with an $(ncidene map)^{n}$
 $i: E \longrightarrow B(V)$ dispired.
 $i(e)$ cannots at e set of two writies
 i injecture
pure example $V = \{1, 2, 3, 4\}$
 $E = \{a, b, c, d\} = \{2i, 2i\}, i2, 3i\}, i3, ai, dipi)$
 $i: E \longrightarrow B(V)$
 $i(a) = \{1, 2\}$ $i(b) = \{2, 3\}$ $i(c) = \{3, 4\}$
 $i(d) = \{1, 2\}$ $i(b) = \{2, 3\}$ $i(c) = \{3, 4\}$
 $i(d) = \{1, 2\}$ $i(b) = \{2, 3\}$ $i(c) = \{3, 4\}$
 $i(d) = \{1, 4\}$

$$\frac{12}{2} + \frac{12}{2} + \frac{12}{2} + \frac{12}{2} + \frac{10}{2} + \frac{10}{2}$$

- Compute Siperfile graph
$$K_{n,m}$$

 $V = V_1 \cup V_2$ disjoint union of sets V_1 , U_2
 $V_1 = n$ elements $V_2 = m$ elements
 $E = \{2 \ge v, w\} | v \in V_1, w \in V_2\}$
 $K_{2,3}$
 V_1
 V_1
 V_2

repeated writings except first & last. Det A tour is a walk with engedge occurs at last one Det An Edenan four is a four which is a trail Ref. An Esleven circuit is en Esleven ter which is reirent. Kionigsberg Bridge Problem Esler Circuit in not quite a graph - multigraph. Definition a graph G= (V, E) is connected if eny pair of vitras is connected by a walk - i.e. tryweV I a v-w walk in G.

Define V is connected to w in G if
$$\exists a v - w$$
 wilk.
Fact ' $G = (V, E)$, then we can uniquely decompare
 $V = V_1 v - \cdots v V_E$ $V_1 \cap V_j = \emptyset$ if $i \neq j$
such that V is connected for $w \ll v_1 w \in V_1$ some i .
 $V_1's$ "components" of G.
 $E_{X'}$ $(a mponents)$ of f .
 $E_{X'}$ $(a mponents)$ $(a mponents)$ "components"