Motatroni of A. is - resolution of A

then we'll write (today) A.

fr complex -A. -> A. -> C

Lemma Grew on absolution ent A, objects

A, B, li A -> B, projecte resolutions

A., B. of A i'B then If.: A. -> B.

sit. extends the map A -> B vir

a map A. -> B. Torthur, l. is unique

up to homotopy.

Df.

inductory

Aite Air Air Air -1

Bire Bire Bire -1

Strong in dire

uniqueves of to homotopy:

want hils sit.

dfo=dg,=fd

hd+dh=f-g

want ho: Ao - B, st.

2 ho = fo - go

d(fo-g)=0 => by exactness
fo-go=d(?)

gres

A, — A — A — O A —

Renarki seg. on botton didn't need to be proj. top didn't need to be exact?

Ext confirm or deay 1

Lemma (Horseshoe)

Chen an exact so $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow G$ in A, proj. res. A. i. C. I A i. C,

can find proj. res B. of B st.

have an exact so $G \rightarrow A^{\dagger} \rightarrow B^{\dagger} \rightarrow C^{\dagger} \rightarrow G$ have an exact so $G \rightarrow A^{\dagger} \rightarrow B^{\dagger} \rightarrow C^{\dagger} \rightarrow G$ which satisfies the condition that

freed i, $G \rightarrow A^{\dagger} \rightarrow B^{\dagger} \rightarrow C^{\dagger} \rightarrow G$ 15 split exact. is $G \rightarrow G \rightarrow G$

"Pf" Set Bi= Ai or Ci detre Bo-B o Ain \rightarrow Ai \rightarrow Ai \rightarrow Ai \rightarrow L

L

L

Ain \rightarrow Ci

Cin \rightarrow Ci genral step

Figure it out.

Some brief foundational comments

All categores are small.

i.e. all cats here sets of abjects to morphisms

Ah, St, Mod, all subsots of some un-manued set "the

Det Hichpo cat. of chain complexes, a lall my afre terms = 0, w/ Morphisms = hom. classes of maps.

Det FlPr Chr, exact >0

cat et ch. complexes et proj.
madules, hom dasses et
morphisms, de >10 exact
except at 0.

HPr Chexaction (A)

Cansider the tractor Ho: HPr Character (A)—A

Claim of A has enough projection then the

is an egvin of art.

Pto enough prajes => essential surjectuity.

A w(prij res A. =>

Hold.)=A

1st lemma today a fully faithfull D.

Fram now on - assume that A has enough properties.

Typical convention chanse a quasi-invise.

Gian Fi A -> B right exact, letre

Li Fi A -> B via Li F(A) = Hi (F(A.))

gren I. A -> B Li F(f) induced for 1: A. -> B.

r.e. have f. (up to hom. eq.) f.: A. -> B. in Ch(A) F(1.): FA. - FB. in Ch(B) H; (F(1.7): H; (FA.) ->H; (FB.) L; F(4) L; F(B) Note HilF(f.) = HilF(g.) if f. s.g. que both extensions of t to A. -> B. Because F(f.) ! F(g.) are homotopic maps hum FA. to PBO

Because the identity hid + dh. = f.-g.

is preserved by any additive functor

Then ELiF3: A -> B as above is a S-functor.

Pf: 0 -> A -> B -> C -> O in A

ux ves. A. i. C., horshoe to get B. to get 0 -> A. -> B. -> C. -> 0 apply F, gut as Es of complexes in B OAFA. AFB. AFC. AO (using split get LES notice? I chain maps B. - B. onique op b compolidas hath comps. hamotopic to id theeline, the indued maps FB. 27 FB. well defined op to hom. hath camps han to id. indoce well defed Cras Hd(FB.) = H; (FB.) maky this idulitiation, get LES → LiF(A) → LiF(B) → LiF(C) → Lin(A) -,.. Checker the connecty maps are natural.

Thun ELIFS are unionsel

Note if P is projecte, chance res.

P. =0>P >0

indy o

LiF(P) = 0 is o.

enough projectes => effective.